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Abstract. We provide, to the best of our knowledge, the first study
about reoptimization complexity of game-theoretical solutions. In a re-
optimization problem, we are given an instance, its optimal solution,
and a local modification, and we are asked to find the exact or an ap-
proximate solution to the modified instance. Reoptimization is crucial
whenever an instance needs to be solved repeatedly and, at each repeti-
tion, its parameters may slightly change. In this paper, we focus on Nash
equilibrium, being the central game-theoretical solution. We study the re-
optimization of Nash equilibria satisfying some properties (i.e., maximiz-
ing/minimizing the social welfare, the utility of a player or the support
size) for some different local modifications of the game (i.e., modification
of a payoff or addition/removal of an action), showing that such prob-
lems are NP-hard. Furthermore, we assess the approximation complexity
of the aforementioned problems, showing that it matches the complex-
ity of the original (non-reoptimization) problems. Finally, we show that,
when finding a Nash equilibrium is thought as an optimization problem,
reoptimization is useful for finding approximate solutions. Specifically,
it allows one to find ε-Nash equilibria with smaller ε than that of the
solutions returned by the best known approximation algorithms.

1 Introduction

The design of computational tools for tackling strategic scenarios has been a
central problem in Artificial Intelligence for several years. The main goal is the
development of software/physical agents capable of behaving optimally when
facing strategic opponents. This is achieved by modelling a scenario by means
of models from non-cooperative game theory [11] and by employing algorithmic
tools [20] to search for optimal solutions (a.k.a. equilibria), each one specify-
ing the best strategies the agents can play. A crucial issue is the study of the
complexity of equilibrium-finding problems and the design of efficient algorithms
scaling up in real-world applications, e.g., as in Security Games [23].

A key solution concept is the Nash Equilibrium (NE), which prescribes strate-
gies so that no player has any incentive in deviating unilaterally. Given the
importance of NE concept, there has been a growing interest on settling its com-
putational properties. More precisely, assessing the computational complexity of
finding an NE has required more than 10 years and the problem was finally shown
to be PPAD-complete [6] even for 2-player games [3]. Recall that PPAD ⊆ FNP



but PPAD * FNP-complete unless NP = co-NP [17], and it is unlikely that this
last equivalence holds. Furthermore, it is generally believed that PPAD 6= FP
and thus it is unlikely that there is an algorithm finding an NE that requires
only polynomial time in the size of the game. When, instead, one searches for
an optimal NE, e.g., maximizing social welfare or the payoff of a single player,
the problem becomes NP-hard [14, 5].

Frequently, the same equilibrium-finding problem must be repeated when-
ever the value of some parameter changes. Practical examples of such a scenario
are, e.g., the problems of bargaining among economic agents [13] and games for
security [23]. In these settings, the structure of the game may gradually change
during time as, for example, costs in bargaining games could change or, in a
security game, the available resources or the values of the targets may vary at
different times of the interaction. Another interesting related scenario is when
learning tools are paired with optimization algorithms (e.g., in an online fash-
ion, see [19]) to continuously refine the estimations of some parameters, in the
attempt to minimize the regret due to the initial lack of information. In all these
scenarios, a central question is whether the knowledge of an optimal solution
(e.g., the Nash equilibrium with a certain property) can make the equilibrium-
finding problem of the modified game easier. This problem is commonly known as
reoptimization problem (see [2, Chapter 4]). Most NP-hard problems maintain
the same complexity in reoptimization but, for many of them, reoptimization
allows one to find better approximations, changing in some cases the approx-
imation computational complexity class or just improving the approximation
ratio in others. This happens, for instance, in scheduling problems [21] and in
the Travelling Salesman Problem [1]. To the best of our knowledge, the prob-
lem of reoptimizing equilibria in games is unexplored in the literature so far.
In this paper, we provide the first study on the reoptimization complexity of
game-theoretical solutions and, more precisely, of Nash equilibria.

Original contributions. The original contributions provided in this paper
are as follows. For the sake of presentation, at first, we focus on the exact re-
optimization problem and, subsequently, on the approximation problem, whose
treatment is more involved. Specifically, we show that the NE reoptimization
problem is NP-hard when searching for NEs maximizing/minimizing the so-
cial welfare, a player’s utility or the support size, and the local modification is
either the modification of the value of some payoffs of the game or the addi-
tion/removal of actions. Then, we prove that the aforementioned problems are
also hard to approximate, unless P = NP. This happens even when the modifi-
cation is as small as possible (i.e., a payoff modification arbitrarily close to zero
or the addition/removal of one action). We show that, for every modification,
maximizing/minimizing social welfare or a player’s utility is not in Poly-APX,
while maximizing/minimizing the support size is not in Log-APX. In doing that,
we also provide a complete picture of the approximation problems for the non-
reoptimization case, while, so far, the results provided by the literature are only
partial and do not analyze the specific approximation complexity classes. Finally,
we study how an NE of the original game maps to those of the locally modified



one, proving that, in case of payoff modifications with maximum magnitude δ,
an NE of the original game is a δ-NE of the modified game. This shows that
reoptimization may be useful when searching for approximate NEs.

2 Preliminaries

A normal-form game [22] is a tuple (N,A,U) in which N = {1, . . . , n} is the set
of players, A = A1 × . . .×An, where Ai is the set of actions available to player
i ∈ N , and U = {U1, . . . , Un}, where Ui : A→ R is the utility function of player
i ∈ N . A (mixed) strategy si for player i ∈ N is a probability distribution over
Ai, where we define with si(a) the probability that a ∈ Ai is played by player i.
We denote with Si the set of all mixed strategies of player i, i.e., the (|Ai| − 1)-
simplex. A strategy si is said to be pure if there exists an a ∈ Ai s.t. si(a) = 1.
Letting S = S1× . . .×Sn, a strategy profile s ∈ S is a tuple specifying a strategy
for each player. Given strategy si, its support is the set of actions {a|si(a) > 0}.
Moreover, the support of a strategy profile is made by the union of the supports
of players’ strategies. With a slight abuse of notation, let Ui(s) be the expected
utility of player i when s is played, i.e., Ui(s) =

∑
a∈A Ui(a)

∏
j∈N sj(aj) (where

aj is the action of player j in a).
A Nash equilibrium (NE) [18] is a strategy profile s s.t., for each i ∈ N , for

each s′i ∈ Si, Ui(si, s−i) ≥ Ui(s
′
i, s−i), where s−i denotes the profile of players’

strategies except for si. It is well known that the problem of finding an NE is
PPAD-complete [6], even for 2-player games [3], and therefore it is unlikely to be
solvable in polynomial time. Moreover, the problem is FIXP-complete for three
or more players [10]. Additionally, [14] and [5] study the complexity of finding a
NE optimizing certain properties—for instance the social welfare (i.e., the sum
of players’ utilities), the utility of a given player, and the size of the support at
the equilibrium—showing that the problem is also inapproximable. The results
that are relevant to our work are summarized in Table 1.

The literature also explores the idea of approximate NEs. Notice that the
computation of an NE can be formulated as an optimization problem as follows.
The NE constraints are relaxed so that players can play also non-optimal actions
with strictly positive probability, provided they guarantee a regret, w.r.t. a best
response, of at most ε (in additive sense), and the objective function to be
minimized is ε. Multiple notions of approximate NE have been proposed. Most
of the literature [16, 8, 24] studies the ε-approximate Nash equilibrium (ε-NE),
which is a strategy profile s.t. no player can gain more than ε by unilaterally
deviating from it. Formally, s ∈ S is an ε-NE if, for each i ∈ N , for each
s′i ∈ Si, Ui(s) ≥ Ui(s

′
i, s−i) − ε. Some works [15, 7] study a stronger notion of

approximate equilibrium strategies, called ε-well-supported Nash equilibrium (ε-
ws-NE). In an ε-ws-NE, a player plays with strictly positive probability only
actions guaranteeing her an expected utility within ε from the best reachable
value, given the strategies of the others. Formally, s ∈ S is an ε-ws-NE if, for
each i ∈ N , for each a ∈ Ai, if si(a) > 0 then, for every a′i ∈ Ai, it holds
Ui(a, s−i) ≥ Ui(a

′
i, s−i) − ε. We remark that, while an ε-ws-NE is always an ε-



NE, the contrary is not generally true. However, given an ε-NE, one can construct
in polynomial time an ε′-ws-NE, where ε′ polynomially scales with ε [4].

Table 1. Known Complexity Results.

Exact solution Approximate solution

Max/Min social welfare NP-hard 1 /∈ Poly-APX2

Max/Min player utility NP-hard 1 /∈ Poly-APX2

Max support NP-hard /∈ Log-APX2

Min support NP-hard /∈ Log-APX3

In the derivation of our original complexity results, we employ two game
gadgets introduced in [5] and [14], respectively. They are built starting from
instances of SAT and SET-COVER, which are well-known NP-complete prob-
lems [12]. For clarity, we provide their brief definition.

Definition 1 (SAT). SAT is defined as follows:

– INSTANCE: A set V of m variables and a collection C of c clauses.
– QUESTION: Is there a satisfying truth assignment for C?

Definition 2 (SET-COVER). SET-COVER is defined as follows:

– INSTANCE: A collection R of subsets of a set T , with |R| = r and |T | = t,
and a positive integer k.

– QUESTION: Does R contain a cover for T of size k i.e., a subset R′ ⊆ R
with |R′| = k and s.t.

⋃
ρ∈R′ ρ = T?

Now, we highlight the structure of the two aforementioned gadgets.

Definition 3 (SAT-gadget). Given a SAT instance with m variables and c
clauses, and a real number ε > 0, a SAT-gadget is a normal-form game ΓSATε =
({1, 2}, ASAT, USAT), with |ASAT

1 | = |ASAT
2 | = 3m+ c+ 1, s.t.:

– there exists an NE where each player’s expected utility is m− 1 iff the SAT
instance is satisfiable;

– the only other NE provides both players an expected utility of ε.

Remark 1 In a SAT-gadget, the support size of players’ strategies at an equi-
librium is, respectively, m for the NE providing m − 1 utility, 1 for the other
one.

1 Results on Min problems are novel, see Remark 2.
2 Inapproximability results on Max problems refine those presented in [5], where the

authors just show that the problems are not in the APX class. The refined results
can be derived similarly to Theorems 5-7.

3 The inapproximability of Min support is a novel result which has never been studied
before. We prove this result in Lemma 1.



Definition 4 (SET-COVER-gadget). Given a SET-COVER instance with
t items and r subsets of items, a SET-COVER-gadget is a normal-form game
ΓSC = ({1, 2}, ASC, USC), with |ASC

1 | = t + 1 and |ASC
2 | = r + 1, s.t. there

exists an NE with support for each player no more than k iff the SET-COVER
instance has a cover of size k.

3 Reoptimization Results

We focus on the following question: does the knowledge of an optimal NE, w.r.t. a
certain property, help one in finding a new optimal solution for a slightly modified
game? This question is crucial every time the game is repeated in time and, at
every repetition, a slight modification to the game may be introduced. Knowing
the solution of the original (pre-modified) game could, in principle, avoid one to
solve the game from scratch making the optimization problem easier. Roughly
speaking, the answer to the above question is no, unless P = NP. To prove such
a result, let us formally define the reoptimization framework in the context of
NE optimization.

Definition 5. Given a property π and a local modification µ, the reoptimization
problem RE-NE(π, µ) is defined as follows:

– INPUT: (Γ, Γ ′, ŝ), where Γ is a normal-form game, Γ ′ is the modified game
obtained by applying µ to Γ , and ŝ is the optimal NE w.r.t. π over Γ .

– OUTPUT: the optimal NE ŝ′ w.r.t. π over Γ ′.

In this work we focus on the following properties π characterizing a NE:

– maximum (minimum) social-welfare (MAX-SW, MIN-SW);

– maximum (minimum) utility for a given player (MAX-REV, MIN-REV);

– maximum (minimum) support size at the equilibrium (MAX-SUPP, MIN-
SUPP).

We denote with Π the set of all properties. Furthermore, we focus on the fol-
lowing local modifications µ to the original game:4

– payoff modification of a single outcome (PAYOFF);

– addition and removal of an action (ADD, REM).

For the sake of presentation, let NE(π) be the problem of finding an optimal NE
w.r.t. property π in a given normal-form game.

In Sections 4 and 5, we study the intractability of the problems of finding,
respectively, an exact and an approximate solution to RE-NE(π, µ), for each pair
π, µ. Table 2 summarizes our results.

4 We do not take into consideration the introduction/removal of a player since it
cannot be considered a local modification of the game.



Table 2. Reoptimization Intractability Results.

PAYOFF ADD REM

MAX/MIN-SW NP-hard NP-hard NP-hard

/∈ Poly-APX /∈ Poly-APX /∈ Poly-APX

MAX/MIN-REV NP-hard NP-hard NP-hard

/∈ Poly-APX /∈ Poly-APX /∈ Poly-APX

MAX/MIN-SUPP NP-hard NP-hard NP-hard

/∈ Log-APX /∈ Log-APX /∈ Log-APX

4 NP-Hardness Results

In this section, we give the formal proofs of the hardness of RE-NE(π, µ) for each
π and µ. Initially, we focus on the case in which µ ∈ {PAYOFF,ADD}.

Theorem 1. RE-NE(π, µ) is NP-hard for each π ∈ Π and for each µ ∈
{PAYOFF,ADD}, even for 2-player games.

Proof. We start by considering the case µ = PAYOFF. We show that the exis-
tence of a polynomial-time algorithm A solving RE-NE(π, µ) would allow one
to solve NE(π) in polynomial time, therefore leading to a contradiction. Given
a generic normal-form game Γ k = ({1, 2}, Ak, Uk), where k denotes the number
of outcomes of the game, we define Γ 0 = ({1, 2}, A0, U0) s.t. A0

i = Aki , for each
i ∈ {1, 2}, and U0

1 (a) = U0
2 (a) = 0 for each a ∈ A0. Clearly, every strategy profile

in Γ 0 is an NE. Therefore, we select an appropriate ŝ0, according to π, as the
initial optimal solution. Specifically, if π = MAX-SUPP, we set ŝ0 to any strategy
profile with full support for both players, otherwise, if π = Π \{MAX-SUPP}, we
set ŝ0 to any pure strategy profile. Then, we can define a sequence of PAYOFF
transformations that allows one to obtain Γ k starting from game Γ 0. Specif-
ically, a transformation that leads from Γ t to Γ t+1, with t = 0, . . . , k − 1, is
s.t., for a given a′ ∈ At for which U t1(a′) 6= Uk1 (a′) or U t2(a′) 6= Uk2 (a′), it sets
U t+1
i (a′) = Uki (a′) for each i ∈ {1, 2} and keeps the other payoffs unchanged.

Notice that the sequence of games Γ 0, Γ 1, . . . , Γ k requires a number of trans-
formations to reach Γ k that is polynomial in the size of the game. Therefore,
starting from (Γ 0, Γ 1, ŝ0), we can apply A to any (Γ t, Γ t+1, ŝi) to produce, in
polynomial time, ŝt+1, up to ŝk. Thus, ŝk being the optimal NE according to π
in Γ k, we reach the contradiction.

Let us now consider µ = ADD. A reasoning similar to the one used above
applies. In particular, given a generic normal-form game Γ k = ({1, 2}, Ak, Uk),
let Γ 0 be ({1, 2}, {x}×{y}, U0) s.t. x ∈ Ak1 , y ∈ Ak2 and U0

i (x, y) = Uki (x, y), for
each i ∈ {1, 2}. The sequence of ADD transformations that allows one to obtain
Γ k from Γ 0 requires a number of steps polynomial in the size of Γ k, where each
step of the sequence adds an action to one of the players. Therefore, by assuming
the existence of A, we reach the same contradiction. �

In the following, we focus on the case µ = REM, which is more involved since
the reasoning underlying the proof of Theorem 1 cannot be applied.



Theorem 2. RE-NE(π, µ) is NP-hard for π ∈ {MAX-SW,MIN-SW,MAX-REV,
MIN-REV} and µ = REM, even for 2-player games.

Proof. In order to prove the result, we show the hardness of the decision version
of our problem, which asks for an NE of the modified game having value of π
greater than or equal to a given constant. Let us first focus on the case π ∈
{MAX-SW,MAX-REV}, and consider a SAT-gadget ΓSATε with 0 < ε < m − 1,
where m is the number of variables of the SAT instance embedded in ΓSATε , as
in Definition 3 (in the following proofs we omit the definition of m, giving it the
same meaning). Let us define a game Γ = ({1, 2}, A, U) s.t. A1 = ASAT1 ∪ {x},
A2 = ASAT2 ∪ {y} and U is equal to:

– Ui(a) = USATi (a), ∀i ∈ {1, 2},∀a ∈ ASAT ;
– U1(x, a2) = U2(x, a2) = −M , ∀a2 ∈ ASAT2 ;
– U1(a1, y) = U2(a1, y) = −M , ∀a1 ∈ ASAT1 ;
– U1(x, y) = U2(x, y) = m;

where M is a sufficiently large constant (i.e., any M ≥ 4), making −M the
lowest payoff in the game. Therefore, Γ preserves the NEs of ΓSATε , i.e., given
an equilibrium s for ΓSATε , playing the actions of Γ corresponding to the support
of s according to the same probability distribution leads to an equilibrium. Γ
has also the new equilibrium (x, y), which is the optimal equilibrium w.r.t π. If
we apply REM to Γ removing action x (or, equivalently, y), we obtain a new
game Γ ′ s.t. its NEs are only those of ΓSATε . Therefore, Γ ′ has an equilibrium
with value for the property π greater than or equal to m−1 iff the SAT instance
embedded in ΓSATε is satisfiable.

Similarly, when π = {MIN-SW,MIN-REV}, we follow the same reasoning, by
setting ε > m− 1 and U1(x, y) = U2(x, y) = m− 2. �

The proof of the previous theorem suggests the following result about optimal
NEs without reoptimization.

Remark 2 Using a reduction similar to that due to [5], setting ε > m − 1, it
follows that NE(π), for π ∈ {MIN-SW,MIN-REV}, is NP-hard, even for 2-player
games.

Theorem 3. RE-NE(MAX-SUPP,REM) is NP-hard, even for 2-player games.

Proof. Let us focus on the maximization of the overall support size at the equi-
librium. The proof for the problem of maximizing the support of a single player
follows the same reasoning.

Consider the decision version of RE-NE(MAX-SUPP,REM), i.e., the problem
of deciding whether Γ ′ has an NE with support size greater than or equal to a
given constant. Let ΓSATε be a SAT-gadget, with ε > 0. Γ is a normal-form game
({1, 2}, A, U) s.t. A1 = ASAT1 ∪ {xi|1 ≤ i ≤ m}, A2 = ASAT2 ∪ {yj |1 ≤ j ≤ m}
and U is defined as:

– Ui(a) = Ui(a)SAT , ∀i ∈ {1, 2}, ∀a ∈ ASAT ;



– U1(xi, a2) = U2(xi, a2) = −M , ∀xi ∈ A1\ASAT1 , ∀a2 ∈ ASAT2 ;
– U1(a1, yj) = U2(a1, yj) = −M , ∀yi ∈ A2\ASAT2 , ∀a1 ∈ ASAT1 ;
– U1(xi, yj) = U2(xi, yj) = 1, ∀xi ∈ A1\ASAT1 , ∀yj ∈ A2\ASAT2 ;

where −M is s.t. it is the lowest payoff in the game (i.e., any M ≥ 4). Γ preserves
the NEs of ΓSATε and also has a new set of equilibria given by all the possible
probability distributions over actions in A1\ASAT1 and A2\ASAT2 . Therefore, if
the two players randomize uniformly over all xi and yj , ŝ has support of size 2m.
Suppose to apply a REM transformation to a row in A1\ASAT1 (or, equivalently,
to a column in A2\ASAT2 ). The resulting Γ ′ has an NE with support greater
than or equal to 2m iff the SAT instance contained in ΓSATε is satisfiable. �

Theorem 4. RE-NE(MIN-SUPP,REM) is NP-hard, even for 2-player games.

Proof. We consider the problem of minimizing the overall support size at the
equilibrium. The proof for the problem of minimizing the support size of a single
player follows the same reasoning. We show that the reoptimization problem is
hard by proving the hardness of its decisional counterpart.

Given a SET-COVER-gadget ΓSC , we build Γ = ({1, 2}, A, U) s.t. A1 =
ASC1 ∪ {x}, A2 = ASC2 ∪ {y} and U is defined as:

– Ui(a) = USCi (a), ∀i ∈ {1, 2}, ∀a ∈ ASC ;
– Ui(x, a2) = −M , ∀i ∈ {1, 2}, ∀a2 ∈ ASC2 ;
– Ui(a1, y) = −M , ∀i ∈ {1, 2}, ∀a1 ∈ ASC1 ;
– Ui(x, y) = 1, ∀i ∈ {1, 2};

where M > 1 (so that −M is the lowest payoff in the game) and therefore, the
set of NEs of Γ is equal to that of ΓSC with the only addition of (x, y), which
is the equilibrium minimizing support size. Γ ′ is obtained by applying REM to
row x (or column y). Γ ′ has an NE with support size less than or equal to k iff
the SET-COVER instance in ΓSC has a cover of size k. �

5 Inapproximability Results

We show the inapproximability of RE-NE(π, µ), for every pair of π and µ. We
initially focus on searching for an NE maximizing either the social welfare or the
utility of a player.

Theorem 5. RE-NE(π,µ) is not in Poly-APX for each π ∈ {MAX-SW,MAX-REV}
and µ ∈ {PAYOFF,REM,ADD}, unless P = NP.

Proof. We provide the proof for π = MAX-SW. The proof for π = MAX-REV
follows the same reasoning. Let ΓSATε be a SAT-gadget, with 0 < ε < m−1

f(m) ,

where f(m) = 2m (the polynomiality of the reduction is preserved as f(m)
can be codified with m bits). Assume, by contradiction, that there exists a
polynomial-time algorithmA providing an approximate solution to RE-NE(MAX-
SW,µ), with approximation factor r = 1

f(m) . Let Γ = ({1, 2}, A, U), where A1 =

ASAT1 ∪ {x}, A2 = ASAT2 ∪ {y}, and U is so defined:



– Ui(a) = USATi (a), ∀i ∈ {1, 2}, ∀a ∈ ASAT ;
– Ui(x, a2) = −M , ∀i ∈ {1, 2}, ∀a2 ∈ ASAT2 ;
– U1(a1, y) = K, U2(a1, y) = −M , ∀a1 ∈ ASAT1 ;
– U1(x, y) = K and U2(x, y) = 0;

where M ≥ 4 and K > 2(m−1). Let ŝ be the NE with maximum social welfare,
i.e., the pure strategy profile where ŝ1(x) = 1 and ŝ2(y) = 1. We define Γ ′ on
the basis of the applied µ as follows:

– µ = PAYOFF. We build Γ ′ by applying a PAYOFF transformation to outcome
(x, y), setting U1(x, y) = K − δ, where δ > 0 is an arbitrarily small positive
constant.

– µ = REM. We build Γ ′ by applying a REM transformation either to row x
or column y.

– µ = ADD. We obtain Γ ′ by adding to Γ a new column y′ s.t.:
• U1(a1, y

′) = K, ∀a1 ∈ ASAT1 ;
• U2(a1, y

′) = −M , ∀a1 ∈ ASAT1 ;
• U1(x, y′) = 0 and U2(x, y′) = 1.

Notice that, in each Γ ′, the additional equilibrium of Γ w.r.t ΓSATε disap-
pears, and no other equilibria are introduced. Therefore, in each of these cases,
by employing A, we would be able to obtain an approximate solution of value
at least 2m−2

f(m) > 2ε iff the SAT instance of ΓSATε is satisfiable. Otherwise, if it is

unsatisfiable, the value of the approximate solution is less than or equal to 2ε.
Thus, the existence of A would allow us to solve SAT in polynomial time. �

The case in which we search for an NE minimizing either the social welfare
or the utility of a player is similar to the case studied above.

Theorem 6. RE-NE(π,µ) is not in Poly-APX for each π ∈ {MIN-SW,MIN-REV}
and µ ∈ {ADD,REM,PAYOFF}, unless P = NP.

Proof. The proof follows from that of Theorem 5. The same reasoning applies if
we choose ε > m− 1 and K < 2(m− 1). �

The next three results focus on the case in which we search for an NE with
maximum support.

Theorem 7. RE-NE(MAX-SUPP, ADD) is not in Log-APX , unless P = NP.

Proof. Consider a SAT-gadget ΓSATε (for any ε > 0). Let us define a game Γ =
({1, 2}, A, U) s.t. A1 = ASAT1 ∪ {xi|1 ≤ i ≤ m}, A2 = ASAT2 ∪ {yj |1 ≤ j ≤ m},
and U is defined as:

– Ui(a) = USATi (a), ∀i ∈ {1, 2},∀a ∈ ASAT ;
– U1(xi, a2) = U2(xi, a2) = −M , ∀xi ∈ A1\ASAT1 , ∀a2 ∈ ASAT2 ;
– U1(a1, yj) = U2(a1, yj) = −M , ∀yj ∈ A2\ASAT2 , ∀a1 ∈ ASAT1 ;
– U1(xi, yj) = U2(xi, yj) = 1, ∀xi ∈ A1\ASAT1 , ∀yj ∈ A2\ASAT2 with i 6= j;
– U1(xi, yj) = U2(xi, yj) = −1, ∀xi ∈ A1\ASAT1 , ∀yj ∈ A2\ASAT2 with i = j;



where M ≥ 4. Clearly, all the NEs of ΓSATε are preserved in Γ , and every
additional NE of Γ does not have actions of ASAT1 and ASAT2 in its support.
Moreover, Γ has always an equilibrium ŝ = (ŝ1, ŝ2) s.t. ŝ1(xi) = 1

m for every 1 ≤
i ≤ m and ŝ2(yj) = 1

m for every 1 ≤ j ≤ m, having support size 2m. Also note
that Γ has no NE with support size greater than 2m. Suppose to apply an ADD
transformation to Γ , leading to a new game, say Γ ′, by introducing an action x
for player 1 s.t. U1(x, a2) = U2(x, a2) = −M for any a2 ∈ ASAT2 , U1(x, yj) = 2
and U2(x, yj) = 1 for any 1 ≤ j ≤ m− 1, and U1(x, ym) = U2(x, ym) = 2. Notice
that ŝ is not an NE of Γ ′ since player 1 has an incentive to deviate from ŝ1,
playing x, which provides her a utility of 2, instead of m−2

m . In addition, simple
arguments allow us to prove that the set of NEs of Γ ′ is equal to the one of
ΓSATε with the addition of (x, ym) (whose support size is 2).

By contradiction, assume there exists a polynomial-time approximation al-
gorithm A for RE-NE(MAX-SUPP, ADD), which guarantees an approximation
factor r = 1

g(m) , where g(·) is a logarithmic function of the input. Clearly, if

the SAT instance embedded in ΓSATε is satisfiable, then A, when applied to
(Γ, Γ ′, ŝ), produces an equilibrium ŝ′ with support size at least 2m

g(m) > 2. Oth-

erwise, the support size of ŝ′ is less than or equal to 2. Thus, the existence of
such an algorithm would allow us to solve SAT in polynomial time. �

Theorem 8. RE-NE(MAX-SUPP, PAYOFF) is not in Log-APX , unless P = NP.

Proof. Let Γ be defined as in the proof of Theorem 7, where, in this case, U is
changed so that:

– U1(x1, yj) = 0 and U2(x1, yj) = (m− 1)δ, ∀yj ∈ A2\ASAT2 , 1 ≤ j ≤ m− 1;
– U1(x1, ym) = 1 and U2(x1, ym) = 0;
– U1(x2, y1) = U2(x2, y1) = 0;
– U1(xi, y1) = 1 and U2(xi, y1) = 0, ∀xi ∈ A1\ASAT1 , 3 ≤ i ≤ m;
– U1(xi, yj) = U2(xi, yj) = 0, ∀xi ∈ A1\ASAT1 , 2 ≤ i ≤ m, ∀yj ∈ A2\ASAT2 , 2 ≤
j ≤ m− 1;

– U1(x2, ym) = 1 and U2(x2, ym) = δ;
– U1(xi, ym) = 0 and U2(xi, ym) = δ, ∀xi ∈ A1\ASAT1 , 3 ≤ i ≤ m;

where δ is an arbitrarily small positive constant. As before, Γ has all the
NEs of ΓSATε , with the addition of ŝ, which has support size 2m (the maximum
possible). Now, let us apply a PAYOFF transformation to Γ , leading to Γ ′, by
changing the utilities in (x1, ym), so that U1(x1, ym) = 1−δ and U2(x1, ym) = 3δ.
Simple considerations allow us to conclude that the NEs of Γ ′ are those of ΓSATε ,
with the addition of (x2, ym). The result easily follows, by contradiction, as in
Theorem 7. �

Theorem 9. RE-NE(MAX-SUPP, REM) is not in Log-APX , unless P = NP.

Proof. Let Γ be defined as in the proof of Theorem 7 with the only difference
being the definition of U , which is defined in the same way but for the subgame
{x1, . . . , xm} × {y1, . . . , ym}. Specifically:



– U1(x1, y1) = U1(x1, y2) = −1;
– U1(x1, yj) = 1, ∀yj ∈ A2 \ASAT2 , 3 ≤ j ≤ m;
– U1(xi, ym) = −1, ∀xi ∈ A1 \ASAT1 , 2 ≤ i ≤ m− 1;
– U1(xi, yj) = 1i 6=j −1i=j , ∀xi ∈ A1 \ASAT1 , 2 ≤ i ≤ m, ∀yj ∈ A2 \ASAT2 , 1 ≤
j ≤ m− 1;

– U1(xm, ym) = −3.
– U2(xi, yj) = −1, ∀xi ∈ A1 \ASAT1 , 1 ≤ i ≤ m− 1, ∀yj ∈ A2 \ASAT2 , 1 ≤ j ≤
m− 1;

– U2(xm, yj) = 1, ∀yj ∈ A2 \ASAT2 , 1 ≤ j ≤ m− 1;
– U2(xi, ym) = 1, ∀xi ∈ A1 \ASAT1 , 1 ≤ i ≤ m− 1;
– U2(xm, ym) = −2m+ 3.

Notice that Γ has always an optimal NE, say ŝ, with support size 2m, s.t.
ŝ1(xi) = 1

m for every 1 ≤ i ≤ m and ŝ2(yj) = 1
m for every 1 ≤ j ≤ m.

We build Γ ′ by applying a REM transformation to row xm. Γ ′ has only an
additional equilibrium w.r.t. ΓSATε (this can be shown by deleting strictly domi-
nated rows/columns). The resulting additional equilibrium is (x1, ym) and, being
in pure strategies, has support of size 2. Therefore, we can prove the theorem by
contradiction, with the same reasoning as in the proof of Theorem 7. �

Now, we focus on the problem of searching for an NE with minimum support.
Before stating our main results, let us introduce the following lemma, whose
proof is useful in the sequel.

Lemma 1. NE(MIN-SUPP) is not in Log-APX , unless P = NP.

Proof. NE(MIN-SUPP) was shown to be NP-hard in [14]. We adapt the reduction
to prove also the hardness of finding an approximate solution to the problem. The
reduction is based on a SET-COVER gadget ΓSC (for details see [14]), where,
for our purpose, k is set equal to r (see Definition 4). By construction, each of
its NEs corresponds to a valid cover for the SET-COVER instance embedded
in the gadget. Moreover, the support size of an NE is precisely the size of the
cover plus one, since player 1’s actions correspond to the subsets composing the
cover, whereas player 2 always plays her last action. Denoting with OPTNE the
optimal solution value of NE(MIN-SUPP), we have that OPTSC = OPTNE −
1, where OPTSC is the size of an optimal cover. By contradiction, assume A
is a polynomial-time approximation algorithm for NE(MIN-SUPP), providing
an approximation ratio r = 1

g(t) , where g(·) is a logarithmic function of the

input. Let APXNE be the value (in terms of support size) of the approximate
solution which is returned by A on ΓSC . Clearly, such solution is an NE, and it
corresponds to a valid cover for the SET-COVER instance, with size APXSC =
APXNE − 1 and, thus, we have OPTSC

APXSC
= OPTNE−1

APXNE−1 . Given that OPTNE

APXNE
≥ r,

we have OPTNE ≥ rAPXNE . Thus, it follows OPTNE−1
APXNE−1 ≥

rAPXNE−1
APXNE−1 ≥ 2r and

therefore we have OPTSC

APXSC
≥ 2

g(t) . The last inequality leads to a contradiction,

since SET-COVER cannot be approximated within a factor c
g(t) , where c is a

constant greater than one [9]. �



Now, we can state the main results.

Theorem 10. RE-NE(MIN-SUPP, µ) is not in Log-APX for each µ ∈
{PAYOFF,ADD,REM}, unless P = NP.

Proof. Let us first prove the case µ=PAYOFF. Given a SET-COVER gadget
ΓSC , where we set k = r (see Definition 4), let us define Γ = ({1, 2}, A, U) s.t.
A1 = ASC1 ∪ {x}, A2 = ASC2 ∪ {y}, and U is so defined:

– Ui(a) = USCi (a), ∀i ∈ {1, 2},∀a ∈ ASC ;
– U1(x, a2) = U2(x, a2) = −M , ∀a2 ∈ ASC2 ;
– U1(a1, y) = 1, U2(a1, y) = −M , ∀a1 ∈ ASAT1 ;
– U1(x, y) = U2(x, y) = 2;

where M > 1 and therefore, −M is lower than any other payoff in the game.
Observe that the NEs of Γ are the same as those of ΓSC , with the only addition
of (x, y) (having support size 2). Suppose Γ ′ is built by applying a PAYOFF
transformation to Γ , by changing U so that U1(x, y) = 1 − δ. Clearly, the set
of NEs of Γ ′ coincides with the one of ΓSC . Suppose, by contradiction, there
exists a polynomial-time approximation algorithm solving RE-NE(MIN-SUPP,
PAYOFF), providing an approximation factor r = 1

g(t) , where g(·) is a logarithmic

function of the input. Following a reasoning similar to that adopted in the proof
of Lemma 1, we can show that the existence of such an algorithm would allow
us to obtain an 1

g(t) -approximate solution for a generic SET-COVER instance,

which is a contradiction.
The proofs for the other cases follow a similar structure: Γ is defined as

before, while Γ ′ is obtained by applying a specific transformation to Γ , which
makes the set of NEs of Γ ′ equal to the one of ΓSC . In particular, for µ = ADD,
the result is achieved by applying an ADD transformation which introduces a
new action x′ into A1, s.t. U1(x′, a2) = U2(x′, a2) = −M , for any a2 ∈ ASC2 ,
U1(x′, y) = 3, and U2(x′, y) = −M − 1. Instead, for µ = REM, the considered
REM operation simply removes action x from A1. �

Given the negative results presented in this section, a natural question is
whether the knowledge of an optimal NE in the original game may help in ap-
proximating the optimum in the locally modified one when we upper bound the
magnitude of the modification. Given that ADD and REM are already elemen-
tary operations, since they consider the addition (respectively, the removal) of a
single action, we concentrate on PAYOFF modifications where payoffs are either
increased or decreased at most of δ > 0, which we call δ-PAYOFF.

The following example shows how the value of an optimal NE of the modified
game (in terms of MAX-SW) can be arbitrarily worse than that for the original
game, even for δ arbitrarily close to zero.

Example 1 Consider the game Γ in Figure 1, where M is an arbitrarily large
value. In this game, the optimal NE for MAX-SW is the bottom right outcome,
which has social welfare M + 1. Suppose to apply a δ-PAYOFF transformation



a12 a22

a11 1, 1 1, 0

a21 0, 0 1,M

Γ

a12 a22

a11 1, 1 1, 0

a21 0, 0 1− δ,M

Γ ′

Fig. 1. Arbitrarily small PAYOFF modifications may disrupt social welfare.

to such outcome, where δ > 0 is a constant arbitrarily close to zero, reducing
player 1’s utility from 1 to 1−δ (see Γ ′ in Figure 1). Clearly, (a21, a

2
2) is no more

an NE, and the new optimal NE becomes the top left outcome, which has social
welfare 2. Therefore, the ratio between the two optimal values is M+1

2 , which
goes to infinity as M grows.

We can construct similar examples showing that the same holds for maxi-
mization/minimization of the revenue and of the support size. Indeed, simple
modifications of the previous proofs (for µ = PAYOFF) show that the same in-
approximability results hold even for µ = δ-PAYOFF with δ > 0 arbitrarily close
to zero, as stated in the following remarks.

Remark 3 For any δ > 0, RE-NE(π, δ-PAYOFF) is not in Poly-APX for each
π ∈ {MAX-SW,MIN-SW,MAX-REV,MIN-REV}, unless P = NP.

Remark 4 For any δ > 0, RE-NE(π, δ-PAYOFF) is not in Log-APX for each
π ∈ {MAX-SUPP,MIN-SUPP}, unless P = NP.

The above remarks directly follow, respectively, from the construction adopted
in the proof of Theorems 5-6 and Theorems 8-10.

6 Approximate Nash Equilibria

We observed that even arbitrarily small modifications in the payoffs may generate
considerable changes in the equilibria of the game. In particular, it may happen
that, given a generic NE s for Γ , a PAYOFF transformation results in s no longer
being an equilibrium point (disregarding any concept of optimality). Notice that
this may happen even for arbitrarily small payoff modification, as shown in
Example 1. Furthermore, the computational complexity of the reoptimization
version of the problem of finding an NE (without requiring optimality w.r.t. a
certain property) is the same as that of its non-reoptimization counterpart (i.e.,
finding an ε-approximate equilibrium minimizing ε). This can be shown with
arguments similar to those of Section 4.

A question with useful practical implications, is whether knowing that s is a
Nash equilibrium for Γ becomes a completely useless piece of information after



a small δ-PAYOFF perturbation is applied to the original game. The answer
is that, if we consider approximate Nash equilibria, strategy profile s preserves
interesting properties and should be kept into account when considering whether
computing a new solution for Γ ′ is worth it or not. Specifically, if we focus on
normalized [0, 1]-games5 (a common assumption in the literature on approximate
NEs), we can state the following theorem, which is a refinement of [4].6

Theorem 11. Consider a generic normal-form game Γ = ({1, 2}, A, U) and a
new game Γ ′ = ({1, 2}, A, U ′), obtained by applying a PAYOFF modification of
magnitude (δ1, δ2), δi ∈ [−1, 1] for each i ∈ {1, 2}, to an outcome (a1, a2) ∈ A of
Γ so that U ′i(a1, a2) = Ui(a1, a2) + δi and U ′i(a1, a2) ∈ [0, 1], for each i ∈ {1, 2}.
Let s∗ be an NE of Γ . Then, s∗ is a δ-well supported Nash equilibrium for Γ ′,
where δ = max{δ1, δ2}.

Proof. First, we show that each action played with positive probability by the
first player in s∗1 leads to a payoff at most δ1 smaller than the payoff at her best
response against s∗2. We denote with S : A→ [−1, 1] a function s.t. S(a1, a2) = δ1
and S(a) = 0 for every a ∈ A \ {(a1, a2)}. Moreover, let â1 ∈ A1 be an action
s.t. strategy s1(â1) = 1 is a best response to s∗2. For each a1 ∈ A1 s.t. s∗1(a1) > 0
it holds:

∑
a2∈A2

U ′1(â1, a2)s∗2(a2)−
∑
a2∈A2

U ′1(a1, a2)s∗2(a2) =

=
∑
a2∈A2

(U1(â1, a2) + S(â1, a2))s∗2(a2)−
∑
a2∈A2

(U1(a1, a2) + S(a1, a2))s∗2(a2) =

=
∑
a2∈A2

U1(â1, a2)s∗2(a2)−
∑
a2∈A2

U1(a1, a2)s∗2(a2)+

+
∑
a2∈A2

S(â1, a2)s∗2(a2)−
∑
a2∈A2

S(a1, a2)s∗2(a2) ≤

≤
∑
a2∈A2

U1(â1, a2)s∗2(a2) +
∑
a1∈A1

∑
a2∈A2

U1(a1, a2)s∗1(a1)s∗2(a2) + |δ1| ≤ |δ1|

The same reasoning holds for the second player, with a final upper bound of
|δ2|. If we set δ = max{δ1, δ2}, the previous inequalities show that s∗ is a δ-well
supported NE for Γ ′. �

Notice that, for δ < 0.3393, s∗ has better guarantees over Γ ′ than what
we could obtain by applying the best polynomial-time approximation algorithm
currently known [24]. Therefore, on a mildly modified game, strategy profile s∗

5 Normalized [0, 1]-games are games in which all the payoffs of the players are in [0, 1].
We recall that any game is equivalent to a normalized [0, 1]-game by means of an
affine transformation.

6 They obtain an ε-approximate NE with ε ≤ 4δ, when perturbing each payoff with
an arbitrary probability distribution over [−δ, δ].



is still a valuable prescription for both players. This is an example in which
reoptimization is useful, allowing one to outperform the best approximation
algorithm known so far.

7 Conclusions

In this paper, we provide, to the best of our knowledge, the first study of the
reoptimization complexity of game-theoretical solutions. We focus on Nash equi-
libria satisfying some specific properties (i.e., maximizing/minimizing the social
welfare, the utility of a player, the support size), showing that the reoptimization
complexity is NP-hard for some local modifications (i.e., modification of a pay-
off or addition/removal of an action). Furthermore, we show that reoptimization
does not help even when one is searching for approximate solutions and this holds
also when the modification is as small as possible. Instead, when one searches
for approximate ε-Nash equilibria, reoptimization can help, allowing one to find
approximations better than those returned by the best known algorithms.

In the future, we are interested in empirically evaluating reoptimization tech-
niques. Although we show in this paper that reoptimization does not help in the
worst case when searching for optimal Nash equilibria, preliminary results sug-
gest that in the average case it is very useful. Furthermore, we are interested in
investigating reoptimization complexity in Security Games models.
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