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Abstract. A kidney exchange is a centrally-administered barter mar-
ket where patients swap their willing yet incompatible donors. Modern
kidney exchanges use 2-cycles, 3-cycles, and chains initiated by non-
directed donors (altruists who are willing to give a kidney to anyone) as
the means for swapping. Current kidney exchanges such as the OPTN
Kidney Paired Donation (KPD) program allow candidates to list multi-
ple willing donors, but only one will donate if the candidate is matched.
There are cases where multiple donors would be willing to donate if it
resulted in their intended candidate being transplanted. In this work,
we study the effects of having two donors donate in such cases. We also
consider the possibility of a donor willing to donate if any of a number
of patients receive kidneys. Furthermore, we combine these notions and
generalize them. The generalization is to exchange among organ clubs,
where a club is willing to donate organs outside the club if and only if
the club receives organs from outside the club according to given speci-
fications.

1 Introduction

Kidney transplantation is the most effective treatment for kidney failure. How-
ever, the demand for donor kidneys far exceeds the supply. The United Network
for Organ Sharing (UNOS) reported that as of October 28th, 2016, the waiting
list for kidney transplant had 99,382 patients.

Roughly two thirds of transplanted kidneys are sourced from cadavers, while
the remaining one third come from willing healthy living donors. Patients who
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are fortunate enough to find a willing living donor must still contend with com-
patibility issues, including blood and tissue type biological compatibility. If a
willing donor is incompatible with a patient, the transplantation cannot take
place.

This is where kidney exchange comes in. A kidney exchange is a centrally-
administered barter market where patients swap their willing yet incompatible
donors. Modern kidney exchanges use 2-cycles, 3-cycles, and chains initiated by
non-directed donors (altruists who are willing to give a kidney to anyone) as the
means for swapping.

The idea of kidney exchange was introduced by Rapaport [1986], and the
first organized kidney exchanges started around 2003 [15, 16]. Today there are
kidney exchanges in the US, Canada, UK, the Netherlands, Australia, and many
other countries. In the US, around 10% of live-donor kidney transplants now take
place via exchanges.

Kidney exchanges started as matching markets where one donor-patient pair
would give to, and receive from, another donor-patient pair. In other words, 2-
cycles [16] were the structures used. Then, kidney exchange was generalized to
also use 3-cycles [17], and then short and finally never-ending chains initiated by
non-directed donors (altruists who are willing to give to anyone without needing
an organ in return) [18, 14].

Significant work has been invested into scaling the market clearing algo-
rithms, that is, the algorithms that find the optimal combination of non-overlapping
(because any one donor can give at most one kidney) cycles and chains [1, 5, 11,
2, 6].

Current kidney exchanges such as the OPTN Kidney Paired Donation (KPD)
program allow candidates to list multiple willing donors, but only one will do-
nate if the candidate is matched. There are cases where multiple donors would
be willing to donate if it resulted in their intended candidate being transplanted.
We propose a significantly generalized, more expressive, approach to kidney ex-
change. We allow more than one donor to donate in exchange for their desired
patient receiving a kidney. We also allow for the possibility of a donor willing to
donate if any of a number of patients receive kidneys. Furthermore, we combine
these notions and generalize them.

Our generalization can be formalized around the concept of exchange among
organ clubs, where, roughly speaking, a club is willing to donate organs outside
the club if and only if the club receives organs from outside the club according
to given specifications. More specifically, exchange clubs extend the notion of a
donor-patient pair, allowing for a set of healthy donors equally willing to donate
one of their kidneys in exchange for an equal (or greater) number of kidneys
received by a target set of patients.

Forms of organ clubs already exist—under an arrangement where one gets
to be in the club as a potential recipient if one is willing to donate one’s organs
to the club upon death. For example, there was such a club called LifeSharers
in the US for several years [9]. It shut down in 2016 amid controversy regarding
whether an organ club would actually hurt the nationwide organ allocation.



Similarly, there is an organ club in the military “that allows families of active-
duty troops to stipulate that their loved ones’ organs go to another military
patient or family [10].” Also, Israel started an organ club where those who have
given consent to become organ donors upon death (or whose family members
have donated an organ in the past) get priority on the organ waitlist if they need
organs; this increased organ donation in Israel by 60% in just one year [20, 12].
One way to think of the approach that we are proposing is as an inter-club
exchange mechanism that increases systemwide good—and can also be applied
to live donation.

Our approach is beneficial also in a setting where there are no organ clubs
in the traditional sense. We will nevertheless find the notion of a club useful in
a technical sense to define the constraints, as we will detail later. We propose a
formalization of this new kind of organ exchange, and propose an organ exchange
approach where clubs are conceptually the primary agents—whether they are
actually clubs, altruists, or donor-patient pairs, or a combination thereof. We
support both intra-club and inter-club donations. We prove that unlike in the
standard model, the uncapped clearing problem is NP-complete.

2 The Standard Model

Today’s kidney exchanges (and other modern barter exchanges) can be modeled
as follows. There is a directed compatibility graph G = (V,E), where vertices
represent participating parties and edges representing potential transactions [17,
1]. In the kidney exchange context, the set of vertices V is partitioned as V =
Vp ∪ Vn, where Vp is the set of donor-patient pairs, and Vn is the set of non-
directed donors (NDDs).

For sake of simplicity, we will consider all non-directed donor vertices as
formal donor-patient pairs, where the patient is an artificial object—denoted
by ⊥—that is incompatible with any donor in the system. Vertices u and v
are connected by a directed edge u → v if the donor in u is compatible with
the patient in v. The exchange administrator can also define a weight function
w : E → R representing, for each edge e = (u, v) ∈ E, the underlying quality or
priority given to a potential transplant from u→ v.

Given the model above, we wish to solve the clearing problem, that is, we wish
to select some subset of edges with maximum total weight subject to underlying
feasibility constraints. For example, a donor d in a donor-patient pair v = (d, p) ∈
Vp will donate a kidney if and only if a kidney is allocated to his or her paired
patient p. Non-directed donors have no such constraint. In the model described
so far, any solution consists of only two kinds of structure:

– chains, that is paths in G initiated by NDDs and then consisting entirely of
donor-patient pairs; and

– cycles, that is loops in G consisting of vertices in Vp—and not non-directed
donors in Vn.



Furthermore, in any feasible solution, these structures cannot share vertices: no
donor can give more than one kidney. Figure 1 gives a feasible solution for a
small example graph.
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Fig. 1. Example of a feasible solution in a pool with 9 donors and 7 patients. Donors
d1 and d7 are NDDs. Dashed arrows represent compatible edges not selected in the
solution. The solution uses one chain, one 2-cycle, and one 3-cycle. For simplicity, edge
weights are omitted.

In the matching shown in Figure 1, the NDD d1 starts a chain of length 3
(satisfying patients p6 and p3), while the NDD d7 does not start any chain. The
remaining 5 vertices are matched using a cycle of length 3 (satisfying patients
p2, p4 and p5) and a cycle of length 2 (satisfying patients p8 and p9).

In kidney exchange, a length cap L is imposed on cycles for logistical reasons.
All transplants in a cycle must be performed simultaneously so that no donor
can back out after his patient has received a kidney but before he has donated
his kidney. In most fielded exchanges worldwide, L = 3, so only 2-cycles and
3-cycles are allowed.

Chains do not need to be constrained in length, because it is not necessary
to enforce that all transplants in the chain occur simultaneously. There is a
chance that a donor backs out of her commitment to donate, but this event
is less catastrophic than the equivalent in cycles. Indeed, a donor backing out
in a cycle results in some other patient in the pool losing his donor while not
receiving a kidney—that is, a participant in the pool is strictly worse off than
before—while a donor backing out in a chain simply results in the chain ending.
While that latter case is unfortunate, no participant in the pool is strictly worse
off than before. In practice, however, a chain length cap is used, in order to make
the planned solution more robust to last-minute failures [7, 6].

The problem can be formulated as an integer program to find the opti-
mal solution, and indeed there has been significant work on developing increas-
ingly scalable integer programming algorithms and formulations for this problem
(e.g., [17, 1]). The state of the art formulation is called PICEF [6]. Its number of
variables is polynomial in chain length cap and exponential in cycle length cap,
which is not a problem in practice because the latter cap is small. Furthermore,



the LP relaxation is very tight, causing good upper bounding in the search tree
and therefore fast run time.

3 Accepting Donations From Up To Two Donors

Sandholm et al. [19] conducted a simulation study, where random orders of the
actual OPTN KPD donor-candidate pairs (some of which have multiple listed
donors) and non-directed donors were chosen to arrive dynamically at the real-
istic rate. For the status quo system in the simulation, the current OPTN KPD
approach, algorithm, and priority-weighting of edges (i.e., potential transplants)
was used. The optimizer selects twice a week a combination of non-overlapping
cycles (up to length 3) and chains (up to length 4 within the optimization batch)
that maximizes the sum of the weights of the matched edges. For the new system,
the same objective was used, but up to two donors from any donor-candidate
pair that is matched in a cycle would donate. One of the two would thereby
initiate a new chain (in the current optimization batch or as a bridge donor).
The optimizer was generalized accordingly.

As Figure 2 shows, this new approach is expected to yield a more than 10%
gain in the number of priority-weighted transplants. This also means shorter
wait times.
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Fig. 2. Efficiency improvement from the new system in terms of priority-weighted
transplants. The x-axis varies the pre-transplant edge failure probability.



4 Exchange Clubs as a Modeling Construct

We propose significant generalizations to (kidney) exchange. We allow more than
one donor to donate in exchange for their desired patient receiving a kidney. We
also allow for the possibility of a donor willing to donate if any of a number of
patients receive kidneys. Furthermore, we combine these notions and generalize
them. We formalize this by introducing the modeling concept of exchange clubs.

Definition 1. (Exchange club) An exchange club c is a tuple (Dc, Pc, αc, γc)
composed of

– a (possibly empty) set of donors Dc;
– a (possibly empty) set of patients Pc;
– a real αc ≥ 1 called “matching multiplier”. Intuitively, this means that for

each matched patient in Pc, the club is willing to donate (in expectation) αc

kidneys to the pool;
– a real γc ≥ 0 called “matching debt”.

The idea of exchange clubs is that donors in Dc are willing to donate kidneys
only if doing so results in a tangible benefit (that is, kidneys donated) to patients
in Pc. More precisely, let nextd (t) be the number of kidneys donated from donors
in Dc to clubs other that c by time t, and let nextp (t) be the number of kidneys
donated from donors outside of c to patients in Pc; then the following inequality
must hold for all time t in order for club c to be willing to participate in the
solution:

nextd (t) ≤ αcn
ext
p (t) + γc (1)

For now, we ignore parameter γc, whose role and motivation will become clear
in the following sections.

We can now formalize the uncapped generalized clearing problem as follows.

Definition 2. (Disjoint clubs) We say that two exchange clubs c and c′ are
disjoint if Pc ∩ Pc′ = ∅ and Dc ∩Dc′ = ∅.

Problem 1. (Uncapped generalized clearing problem) Let C be a set of
mutually disjoint exchange clubs; let D = ∪c∈CDc and P = ∪c∈CPc denote the
overall set of donors and patients respectively. Furthermore, let E ⊆ D × P
be the set of compatibility edges, and let w : E → R a weighting function
assigning a weight to every compatibility edge. We want to find a set of edges
that maximizes the sum of weights and satisfies Inequality 1 assuming all the
selected transplants occur simultaneously.

4.1 Matching Debts

We now explain the meaning of γc. Suppose a number nextp of patients in club c
receive kidneys from other clubs, and that the optimal solution of the problem
requires that nextd donors from club c donate a kidney to other clubs. If nextd <
αcn

ext
p , we say that club c owes αcn

ext
p − nextd kidneys to the system. This is



exactly the meaning of the “matching debt” of a club. It reflects the sum of
all debts that a club has cumulated in the past. Except for clubs defined by
non-directed donors, each club starts with a debt of 0 at the beginning, and
potentially increases and decreases its debt to the system over time.

4.2 The Standard Model is a Special Case

The (uncapped) standard model is a special case of our model:

– each non-directed donor defines a club c with no patient, and where he or
she is the only donor. Furthermore, the club has γc = 1 (the value of αc is
irrelevant);

– each (d, p) donor-patient pair in the standard models defines a club c, where
Dc = {d}, Pc = {p} and αc = 1.

At the same time, our new model allows for some important generalizations.
For instance, consider the case where one patient p has a set of two donors both
willing to donate a kidney in exchange for only one kidney donated to p. In this
case, the two donors and the p form a club with αc = 2.

The introduction of exchange clubs as a modeling construct calls for a dif-
ferent representation of the problem because the traditional donor-patient pairs
cannot capture all the new aspects. Therefore, we explicitly represent donors
and patients as different types of vertices in the graph. Figure 3 illustrates this
under the further assumption that αc = 1, γc = 0 for all clubs. We represent
donor vertices with a square and patient vertices with a circle. Observe that in
Figure 3 it is not possible to extend the given solution with an edge from Donor 8
to Patient 7, as doing so would violate Inequality 1: Club D does not receive any
kidney from other clubs, and therefore it cannot be asked to donate.

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

Donors

Patients

A B C D

Clubs

Fig. 3. Tiny example problem instance. Vertical dashed lines separate different ex-
change clubs (so that, for instance, the first club has D1 = {1, 2, 3}, P1 = {1, 2}). Solid
edges show a solution. Dashed edges represent unused compatibilities. For simplicity,
we do not show edge weights in the figure. This figure assumes αc = 1, γc = 0 for all
four clubs.

4.3 Incentive Issues

We briefly discuss some of the incentive issues in the new model. The issues we
discuss arise when considering a club with a matching multiplier αc > 1, that
is, the club is willing to donate more than it receives.



First of all, we give a bit more context as to why Inequality 1 requires that
next{d,p} refers to kidneys donated from and to other clubs, i.e. clubs different from
c. This is because when αc > 1, we do not want transplants within the club to
increase the number of donations the club is willing to make to other clubs.
Furthermore, if one were to increase the debt a club owes to outside the club
based on the intra-club transplants, that would (further) incentivize the club to
not reveal their intra-club transplants. In terms of actual mechanism design, it is
already known that even in versions of the standard model, one cannot achieve
both efficiency and incentive compatibility (i.e., all centers being motivated to
reveal all their pairs) in a single-shot setting [4, 3], but credit mechanisms hold
promise in this regard [8].

Second, we might be forced to consider that when αc > 1, intra-club dona-
tions might be preferable to inter-club donations. Consider the scenario where
αc > 1 and club c faces the decision of whether to accept a donation to patient
p ∈ Pc from a different club c′, or match the same patient p with a donor d ∈ Dc.
Unless the donation from club c′ is much better than the one from donor d, club
c would have incentive to match internally to avoid accruing a debt of αc − 1
to the system. In order to account for this issue, we can constrain the inter-club
donations so that they can only happen if they are better than the alternative
intra-club donations (if the latter exist).

Finally, we don’t assume that every donor in Dc be incompatible with all
patients in Pc. Indeed, we argue that even if some donor d is compatible with
some patient p, we cannot simply conclude that matching d with p is necessarily
a good idea, as it depends on the weight of the edge between them. In general,
avoiding a greedy intra-club match would result in greater (or equal) value for
the system as a whole.

5 Uncapped Problem Formulation and Hardness Result

It is not clear how one could apply an integer program formulation like the
state-of-the-art PICEF formulation for the standard kidney exchange problem [6]
in this new setting. The problem here is that the realizability of a particular
donation depends on what transplants have already been conducted. It does not
seem immediate how such aspects could be encoded in a formulation like PICEF.

However, one can easily write an integer linear program for the uncapped
clearing problem that selects edges so as to maximize total weight of the selected
edges subject to satisfying Constraint 1.

We now present an integer linear program formulation, Formulation 1, for
finding an optimal solution to the uncapped clearing problem (Problem 1).

Here, we let xdp be a binary value (Constraint 4 ) indicating whether the
edge (d, p) ∈ E is selected in the solution. Constraints 1 and 2 ensure that
each donor donates at most one kidney and that each patient receives at most
one kidney, respectively. Constraint 3 encodes the condition that each club c
donates at most bγc+αcn

ext
p c kidneys. Finally, the objective function makes sure

that we select a maximum-weight solution.



max
∑

(d,p)∈E

wdp xdp

1
∑
p∈P

(d,p)∈E

xdp ≤ 1 ∀ d ∈ D

2
∑
d∈D

(d,p)∈E

xdp ≤ 1 ∀ p ∈ P

3
∑
d∈Dc

∑
p∈P\Pc
(d,p)∈E

xdp ≤ γc + αc

∑
p∈Pc

∑
d∈D\Dc
(d,p)∈E

xdp ∀ c ∈ C

4 xdp ∈ {0, 1} ∀ (d, p) ∈ E

Formulation 1. MIP formulation for the uncapped clearing problem.

Theorem 1 shows that the decision problem associated with this problem is
NP-complete. This is in stark contrast to the standard model where the uncapped
version can be solved in polynomial time [1]. This increase in hardness is the
cost of our increased expressiveness.

Theorem 1. The uncapped generalized clearing problem is NP-complete.

Proof (Proof sketch.). Membership in NP : Given a set of mutually disjoint
exchange clubs C and set of k trades, it is trival to check in polynomial time if
they satisfy Inequality 1.
NP-hardness: We reduce from SET-PACKING (SP). An instance of SP takes
a set of items U , a family S of subsets of U , and an integer k as input; the task
is to find a disjoint subfamily X ⊆ S such that |X | = k.

Assume that we are given an instance of SP. We will now build an instance
of our problem. Let n = |U| be the number of items and m = |S| be the number
of subsets. Index the items {u1, . . . , un} ∈ U and the subsets {S1, . . . , Sm} ∈ S.
Construct a disjoint set of clubs C as follows. For each ui ∈ U , construct a club ai
with no patient, one donor, and γai

= 1. For each subset Sj ∈ S, construct a club
cj with one patient and no donor. Furthermore, for each subset Sj , construct a
club bj with one donor and ` = |Sj | patients, γbj = 0, and αbj = 1/`. Intuitively,
this club will donate its one kidney iff each of the ` patients receives a kidney.

We will now specify the set of legal transplants. Let M = |U| + 1. For each
subset Sj ∈ S, draw a directed edge with weight M from the single donor in
club bj to the single patient in club cj . Furthermore, for each item ui ∈ U and
subset Sj ∈ S such that ui ∈ Sj , draw one directed edge with weight 1 from
the single donor in club ai to the patient corresponding to item ui in club bj .
Figure 4 shows the final construction.

We will now show that a solution exists for the instance of SC if and only if
our problem has a legal matching with weight in [kM, (k + 1)M).



Universe set:

{1, 2, 3, 4, 5, 6, 7}

Set packing instance:

S1 {1, 3, 4}
S2 {1, 3, 5, 7}
S3 {4, 6}

1 2 3 4 5 6 7

M M M
S1 S2 S3

(b)

Fig. 4. (b) Constructed instance of our problem. Each nodes represents a club, with
donors in the top part, and patients in the bottom part. Edges represent compatibilities.

(⇒) Suppose there exists some solution S ′ = {S′1, . . . , S′k} to the SP problem;
that is, there exists some disjoint subfamily of S of size k. Then, for each subset
S′j ∈ S ′, for each element ui in S′j , use the edge from club ai to club bj . By the
disjointness of the subfamily S ′, each single-donor club ai for i ∈ [n] donates to
at most one club. Furthermore, each club bj corresponding to S′j ∈ S ′ receives
one kidney for each patient in its club; by construction, their matching multiplier
is now satisfied. Thus, for each S′j ∈ S ′, include the edge with weight M from
the one donor in bj to the one patient in cj . This results in a matching of weight
at least kM , but no more than kM + n < (k + 1)M .
(⇐) Suppose there exists a matching in our problem such that the weight of
the matching is in [kM, (k+ 1)M). Then exactly k of the edges between exactly
k pairs of clubs b· and c· are used, at total weight kM . Let j′ ∈ [m′] index
those clubs bj′ that use their one outgoing edge to club cj′ . Each club bj′ uses
that edge if and only if every one of its internal patients receives a kidney; since
each single-donor club a· can give at most one kidney, they are used at most
once. Since at most n clubs a· can be used, each at additional weight 1, the
final matching is of weight at most km+ n < (k+ 1)M ; further, exactly k clubs
bj′ were fulfilled completely, corresponding to exactly k disjoint subsets Sj′ ∈ S
being packed.

6 Conclusions and Future Research

Some candidates bring multiple willing donors into KPD. Today, at most one
of them will donate. Existing work shows that having up to two of them do-
nate would significantly increase the efficiency of the system, producing more
(priority-weighted) transplants.

Motivated by the reality of fielded kidney exchanges, in this paper we pro-
posed significant generalizations to kidney exchange—and barter markets more
generally. Specifically, we moved the model from individual and independent
patient-donor pairs to the modeling concept of multi-donor and multi-patient
organ clubs, where a club is willing to donate organs outside the club if and only



if the club receives organs from outside the club according to expressed pref-
erences. We proved that unlike in the standard model, the uncapped clearing
problem is NP-complete.

Future research includes a more extensive simulation of the benefits of the
proposed approach in other relevant scenarios, studying the candidates’ and
donors’ incentives, and considering the ethics.
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[16] Roth, A., Sönmez, T., Ünver, U.: Pairwise kidney exchange. Journal of Economic
Theory 125(2), 151–188 (2005)
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