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Abstract. The housing market setting constitutes a fundamental model
of exchange economies of goods. In most of the work concerning housing
markets, it is assumed that agents own and are allocated discrete houses.
The drawback of this assumption is that it does not cater for randomized
assignments or allocation of time-shares. Recently, house allocation with
fractional endowment of houses was considered by Athanassoglou and
Sethuraman (2011) who posed the open problem of generalizing Gale’s
Top Trading Cycles (TTC) algorithm to the case of housing markets
with fractional endowments. In this paper, we address the problem and
present a generalization of TTC called FTTC that is polynomial-time as
well as core stable and Pareto optimal with respect to stochastic domi-
nance even if there are indifferences in the preferences. For the standard
setting in which each agent owns one discrete house, FTTC coincides
with a state of the art strategyproof mechanism for housing markets
with discrete endowments and weak preferences. We show that FTTC
satisfies a maximal set of desirable properties by proving two impossibil-
ity theorems. Firstly, we prove that with respect to stochastic dominance,
core stability and no justified envy are incompatible. Secondly, we prove
that there exists no individual rational, Pareto optimal and weak strat-
egyproof mechanism, thereby answering another open problem posed by
Athanassoglou and Sethuraman (2011). The second impossibility implies
a number of results in the literature.

1 Introduction

The housing market is a fundamental model of exchange economy of goods. It
been used to model online barter markets and nation-wide kidney markets [21,
25]. The housing market (also called the Shapley-Scarf market) consists of a
set of agents each of whom owns a house and has preferences over the set of
houses. The goal is to redistribute the houses among the agents in an efficient
and stable manner. The desirable properties include the following ones: Pareto
optimality (there exists no other assignment which each agent weakly prefers and
at least one agent strictly prefers); individual rationality (the resultant allocation
is at least as preferred by each agent as his endowment); and core stability (there



exists no subset of agents who could have redistributed their endowments among
themselves so as to get a more preferred outcome than the resultant assignment).

Shapley and Scarf [23] showed that for housing markets with strict prefer-
ences, an elegant mechanism called Gale’s Top Trading Cycles (TTC) (that is
based on multi-way exchanges of houses between agents) is strategyproof and
finds an allocation that is in the core [23, 15].1 Along with the Deferred Accep-
tance Algorithm, TTC has provided the foundations for many of the develop-
ments in matching market design [16, 25]. The Shapley-Scarf market has been
used to model important real-world problems for allocation of human organs
and seats at public schools. Since the formalization of TTC, considerable work
has been done to extend and generalize TTC for more general domains that
allow indifference in preferences [1, 12, 6, 18, 22] or multiple units in endow-
ment [11, 14, 26, 28].

Despite recent progress on house allocation and housing market mechanisms,
the general assumption has remained that agents cannot own or be allocated frac-
tions of houses. The disadvantage of this assumption is that it does not model
various cases where agents have fractional endowments or when agents can share
houses. This is especially the case when agents have the right to use different fa-
cilities for different fractions of the time and fractional allocation of resources is
helpful is obtaining more equitable outcomes. Fractional allocation of houses can
also be interpreted as the relative right of an agent over an house [2]. Finally,
fractional allocations can be used to model randomized allocation of indivisi-
ble resources where agents exchange probabilities of getting particular houses.
Hence allocation of houses under fractional endowments generalizes a number
of well-studied house allocation models. If there are no fractional endowments
but fractional allocation is possible, then we end up in the random assignment
model [10]. If the endowments are discrete, then we recover the housing market
model. If the endowment matrix is a permutation matrix, we end up in the ba-
sic house trading model of Shapley and Scarf [23] in which each agent owns a
distinct house [2].

Although important mechanisms have been proposed for house allocation,
random assignment, and housing markets, it has not been clear how to general-
ize TTC for housing markets with fractional endowments so that the properties
enjoyed by TTC such as core stability are still satisfied. This fundamental prob-
lem was raised by Athanassoglou and Sethuraman [2] who were the first to
examine house allocation in which agents are endowed with fractions of houses.
They presented an algorithm that returns an assignment that is individually
rational and satisfies a fairness concept called no justified envy. Athanassoglou
and Sethuraman [Page 512, 2] posed an open problem whether it is possible to
extend TTC to handle fractional endowments. They also highlighted the core of
the fractional housing market as an interesting topic: “The most appropriate way
to define the core is not apparent; our preliminary investigation suggests mostly

1 The seminal paper of Shapley and Scarf [23] was referenced prominently in the
scientific background document of the 2012 Sveriges Riksbank Prize in Economic
Sciences in Memory of Alfred Nobel given to Lloyd Shapley and Alvin Roth.
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negative results, but much remains to be done here. Finally, an interesting (and
challenging) open question is to generalize the TTC mechanism to this setting.”
In the same paper, Athanassoglou and Sethuraman [2] also asked another ques-
tion: “In light of this and other impossibility results, a natural question to ask is
whether there exists a mechanism that is individually rational, ordinally efficient,
and weakly strategyproof.”

In this paper, we answer the two open questions posed by Athanassoglou
and Sethuraman [2]. We use the SD (stochastic dominance) relation to define
the core and present an SD-core stable algorithm that generalizes TTC. We also
refer to individual rationality as SD-IR, ordinal efficiency as SD-efficiency, and
weak strategyproof as weak SD-strategyproof. We prove that the three properties
are incompatible.

Contributions In this paper, we propose a polynomial-time algorithm called
FTTC (Fractional Top Trading Cycle) which is designed for housing markets
with fractional endowments. With respect to the stochastic dominance relation,
we prove that FTTC is individually rational, Pareto optimal and core-stable.
In contrast, the previously proposed controlled-consuming (CC) algorithm of
Athanassoglou and Sethuraman [2] for fractional housing markets is not SD-
core stable.

We show that FTTC satisfies a maximal set of desirable properties by proving
two impossibility theorems. Firstly, we show that core stability and no justified
envy are incompatible. Secondly, we prove that any mechanism that is individ-
ually rational and Pareto optimal cannot be weak strategyproof which answers
the second open problem posed by Athanassoglou and Sethuraman [2]. The im-
possibility result also implies prior impossibility results in the literature [2, 29].
We then prove that although FTTC is not weak SD-strategyproof, checking
whether there exists a manipulation for a given agent that is SD-preferred over
the truthful outcome is an NP-hard problem.

Even though FTTC is designed for fractional allocations and fractional en-
dowments, FTTC coincides with the state of the art mechanisms for discrete
house allocation and housing markets (see Table 1). In this way, we unify and
generalize the previous mechanisms in the literature. For discrete endowments,
all our positive results with respect to SD relation translate to positive results
with respect to the responsive set extension.

Domain restriction Mechanism

unrestricted FTTC
strict preferences, discrete and single endowments TTC
discrete and single endowments Plaxton’s mechanism [18]
strict preferences, discrete endowments ATTC [11].
no endowments Serial Dictatorship

Table 1. Equivalence of FTTC with known mechanisms on restricted domains.
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2 Related Work

The fractional assignment model with endowments was first examined by Yilmaz
[29] and Athanassoglou and Sethuraman [2]. Yilmaz [29] presented an interesting
generalization of the probabilistic serial random assignment mechanism of Bogo-
molnaia and Moulin [10] to the setting where the houses are endowments of the
agents. Athanassoglou and Sethuraman [2] generalized the algorithm of Yilmaz
[29] to the case where the endowments may be fractional and the preferences
over individual houses need not be strict.

Apart from the work of Yilmaz [29] and Athanassoglou and Sethuraman [2],
the remaining literature focuses on discrete allocation of indivisible resources
that does not consider house allocation with fractional endowments. Discrete
housing markets with indifferences have been analyzed in a number of recent
papers [1, 12, 6, 18, 19, 22]. Alcalde-Unzu and Molis [1] and Jaramillo and Man-
junath [12] proposed desirable mechanisms (called TTAS and TCR respectively)
for housing markets with indifferences. Aziz and de Keijzer [6] outlined a sim-
ple class of mechanism called GATTC which encapsulate TCR and TTAS and
satisfy many desirable properties of the two mechanisms. In the model we con-
sider, an agent can be allocated more than one house or units from different
houses [26, 17, 14]. Recently, Biró et al. [9] examined a discrete exchange setting
in which agents have strict preferences over objects but there can be multiple
copies of objects. They study the conditions under which strategyproofness can
be acheived. Our focus is different and our model is general in at least two
respects: we allow subjective indifference in the preferences and also allow frac-
tional endowments.

Allocation of discrete multiple objects to agents has been considered be-
fore [11, 14, 17, 24, 26, 28]. Papai [17] assumed strict preferences over bundles of
objects which does not allow the flexibility to incorporate indifferences. Konishi
et al. [14] and Sonoda et al. [26] also considered housing markets with multiple
goods but mainly presented negative results such as the emptiness of the core
for general preferences over sets of houses. Similarly, Todo et al. [28] showed
that under the lexicographic preference domain, there exists no exchange rule
that satisfies strategyproofness and Pareto efficiency. Fujita et al. [11] studied a
natural extension of TTC in which each agent has strict preferences over houses
and preferences over sets of houses are derived via the lexicographic set exten-
sion. Each agent is divided into subagents with each agent owning exactly one
discrete house and then the standard TTC is applied to the market with the
subagents. In the setting we consider, agents may be indifferent between houses
and there may be different units of houses in the markets and the allocation
need not be discrete. Dividing the fractional houses into discrete houses may
result in an exponential blowup in the size of the market. Sönmez [24] examined
general exchange and matching models and showed that in a large class of such
models, there exists a Pareto efficient, individually rational, and strategyproof
solution only if all allocations in the core are Pareto indifferent for all problems.
When exchanging multiple indivisible goods, Atlamaz and Klaus [3] discussed
how agents may have an incentive to hide some endowments.
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3 Preliminaries

3.1 Model

Consider a market with set of agents N = {1, . . . , n} and a set of houses H =
{h1, . . . , hm}. Each agent has complete and transitive preferences %i over the
houses and %= (%1, . . . ,%n) is the preference profile of the agents. Agents may
be indifferent among houses. We denote %i: E

1
i , . . . , E

ki
i for each agent i with

equivalence classes in decreasing order of preference. Thus, each set Ej
i is a

maximal equivalence class of houses among which agent i is indifferent, and
ki is the number of equivalence classes of agent i. An agent has dichotomous
preferences if he considers each house as either acceptable or unacceptable and is
completely indifferent between unacceptable houses and also indifferent between
acceptable houses.

Each agent i is endowed with allocation e(i) where e(i)(hj) units of house hj
given to agent i. The quadruple (N,H,%, e) is a housing market with fractional
endowments. Note that in the basic housing market, each agent is endowed with
and is allocated one house and the endowments are discrete: n = m, e(i)(hj) ∈
{0, 1} and

∑
h∈H e(i)(h) = 1 for all i ∈ N and

∑
i∈N e(i)(h) = 1 for all h ∈ H.

When allocations are discrete we will also abuse notation and denote e(i) as a
set.

A fractional assignment is an n×m matrix [x(i)(hj)]1≤i≤n,1≤j≤m such that
for all i ∈ N , and h ∈ H,

∑
i∈N x(i)(h) =

∑
i∈N e(i)(h). The value x(i)(hj) is

the fraction or units of house hj that agent i gets. We will use fraction or unit
interchangeably since we do not assume that exactly one unit of each house is in
the market. Each row x(i) = (x(i)(h1), . . . , x(i)(hm)) represents the allocation
of agent i. Given two allocations x(i) and x(j), x(i) +x(j) is the point-wise sum
of the allocations x(i) and x(j). If

∑
i∈N x(i)(h) = 1 for each h ∈ H, a fractional

assignment can also be interpreted as a random assignment where x(i)(hj) is
the probability of agent i getting house hj . Note that endowment e itself can be
considered as the initial assignment of houses to the agents with e(i) being the
initial allocation of agent i ∈ N . A fractional housing market mechanism is a
function that takes as input (N,H, e,%) and returns an assignment or vector of
allocations (x(1), . . . , x(n) such that

∑
i∈N x(i) =

∑
i∈N e(i). We do not require

in general that
∑

i∈N e(i)(h) or
∑

h∈H e(i)(h) are integers.

Example 1 (Discrete Housing Market and TTC).

Consider the following housing market (N ′, H,%, e) where N = {1, 2, 3},
H = {a, b, c}, The endowment assignment can be represented as follows:

e =

1 0 0
0 1 0
0 0 1

 .
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1 : b, c, a

2 : c, a, b

3 : a, b, c

Since for all i ∈ N , h ∈ H, e(i)(h) ∈ {0, 1},
∑

h∈H e(i)(h) = 1, and∑
i∈N e(i)(h) = 1, the housing market is equivalent to the basic housing market.

The outcome of running the TTC algorithm is that each agent gets its most
preferred house:

TTC(N,H,%, e) =

0 1 0
0 0 1
1 0 0

 .

3.2 Properties of allocations and mechanisms

Before defining various stability and efficiency properties, we need to reason
about agents’ preferences over allocations. A standard method to compare ran-
dom allocations is to use the SD (stochastic dominance) relation. Given two
random assignments x and y, x(i) %SD

i y(i) i.e., an agent i SD prefers alloca-
tion x(i) to y(i) if ∀h ∈ H :

∑
hj∈{hk:hk%ih} x(i)(hj) ≥

∑
hj∈{hk:hk%ih} y(i)(hj).

The SD relation is not complete.

We define normative properties of allocations as well as mechanisms.

– SD-efficiency : an assignment x is SD-efficient if there exists no other as-
signment y such that y(i) %SD

i x(i) for all i ∈ N and y(i) �SD
i x(i) for some

i ∈ N .

– SD-core: an assignment x is in SD-core if there exists no other coalition
S ⊆ N and an assignment y for agents in S such that

∑
i∈S y(i) =

∑
i∈S e(i)

and y(i) �SD
i x(i) for all i ∈ S.

– SD strict core: an assignment x is in SD- strict core if there exists no other
coalition S ⊆ N and an allocation y on S such that

∑
i∈S y(i) =

∑
i∈S e(i),

y(i) %SD
i x(i) for all i ∈ S and y(i) �SD

i x(i) for some i ∈ S.

– SD individually rational : an assignment x is SD-individually rational if
x(i) %SD

i e(i).

– A mechanism f is SD-manipulable iff there exists an agent i ∈ N and
preference profiles % and %′ with %j=%′j for all j 6= i such that f(%′) �SD

i

f(%). A mechanism is weakly SD-strategyproof iff it is not SD-manipulable,
it is SD-strategyproof iff f(%) %SD

i f(%′) for all % and %′ with %j=%′j for
all j 6= i.

Remark 1. For any lottery extension, SD strict core stability implies SD core
stability. Moreover, SD strict core implies SD-efficiency.
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When each agent owns exactly one discrete house and each assignment results
with each agent owning one house, then individual rationality and core with
respect to SD coincide with the standard notions as used in [1, 6, 12]. SD-
individually rationality is equivalent to individual rationality; SD-efficiency is
equivalent to Pareto optimality; SD-core is equivalent to core; SD-strict core is
equivalent to strict core; SD-strategyproofness, weak SD-strategyproofness and
DL-strategyproofness are equivalent to strategyproofness.

In the absence of endowments, the concept is envy-freeness can be easily
defined: x(i) %SD

i x(j) for all i, j ∈ N . However, envy-freeness needs to be
redefined when taking into account endowments of agents. Athanassoglou and
Sethuraman [2] defined no justified envy (NJE) as follows. An agent i has justified
envy towards agent j if x(j) �SD

i x(i) and x(i) %SD
j e(j). An assignment satisfies

no justified envy (NJE) if no agent i ∈ N has justified envy towards some other
agent j ∈ N . The notion is weaker than the NJE notion defined by Yilmaz [29].

4 FTTC: Fractional Top Trading Cycles Algorithm

We present FTTC (Fractional Top Trading Cycles) that is an algorithm based on
multi-way exchanges of fractions of houses. In contrast to TTC for the single unit
discrete housing markets, multiple houses can be owned by an agent. Hence, we
divide each agent i ∈ N into m subagents with each subagent ih corresponding
to one of the house h ∈ H. A subagent ih owns or is allocated a fraction of
h on behalf of i. During the running of FTTC each subagent ih can only own
units of h and not other houses. Each subagent ih has the same preferences as
agent i. FTTC is implemented by maintaining a graph where the set of vertices
are associated with subagents and houses. An edge from a subagent to a house
indicates the house is a maximally preferred among the houses in the graph by
the subagent, an edge from a house to a subagent indicates that the subagent
has a non-zero fractional ownership of that house. The graph corresponds to the
part of the assignment that is not yet finalized. During the running of FTTC, the
graph and hence the current assignment is modified. Those houses and subagents
that are removed from their graph, their assignment is already finalized. The
algorithm is outlined as Algorithm 1. Where the context is clear, we will refer
to a subagent simply as the agent he is representing. For example, if house h is
removed from the graph, the allocation of h to different (sub)agents has been
fixed.

A trade is specified by a cycle of the form h1, 1, h2, 2 . . . , hk, k, h1 such that
each agent i transfers α units of his house hi to agent (i + 1) mod (k) where
α ≤ e(i)(hi). If the trade includes an agent i such that hi /∈ max%i

(H) but
h(i+1) mod (k), then the trade is referred to as a good cycle. A cycle that is not
good will be referred to as non-good. In the housing market, if an agent i owns
a house h such that h /∈ max%i

(H), then we call i an attractor. The reason for
calling such an agent an attractor is that we will want other houses and agents
to form a path towards such an agent.
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Algorithm 1 FTTC algorithm for house markets with fractional endowments.

Input: (N,H,%, e)
Output: An SD-individually rational, SD-efficient, and SD-core stable allocation.

1: x←− e {We maintain assignment x}
2: Based on (N,H,%, e), construct a graph G = (N∗ ∪H,E,w) where

– N∗ ←− {ih : i ∈ N,h ∈ H} {N∗(G) denotes the set of subagents in the graph}
– (ih, h

′) ∈ E iff h′ ∈ max%i
(H(G)) and h 6�i max%i

(H(G))
– (h, ih) ∈ E iff x(i)(h) > 0; edge weight w(h, i)←− x(i)(hj)

3: Consider a tie-breaking priority ranking LH over the houses and LN over the agents.

4: Maintain set of attractor subagents (a subagent ih such that x(i)(h) > 0 and
h /∈ max%i

(H(G))).
5: Maintain d(v) — the shortest distance of vertex v to an attractor. Thus d(i) = 0

and d(h) = 1 if ih is an attractor.
6: {We will next consider absorbing sets (of unweighted version of G) which can be

found via Tarjan’s algorithm [27]. Among absorbing sets, we consider non-good
absorbing sets that do not contain a good cycle (i.e., abosorbing sets in which no
subagent points to a house strictly more preferred to a house it currently owns)}

7: while N∗(G) 6= ∅ do
8: while G has at least one non-good absorbing set do
9: In each non-good absorbing set, delete those houses and subagents from G

(since allocation for the agents is now completely fixed for the houses in the
absorbing set)

10: Readjust the graph (subagents now have arcs to the most preferred houses in
the modified graph). Remove any subagent ih if h has been removed from G.

11: end while
12: Identify each (disjoint) cycle C by making each vertex in G point to exactly one

other vertex in the following manner:

– Among the owners of h, make h point to the highest ranked owner with the
minimum distance to an attractor.

Next(h)←− max
LN

(arg min
d(·)

(xh(N∗(G)))).

Let P (ih) be the set of houses pointing to subagent ih.
– Make each subagent ih point to the highest ranked house with the minimum

distance to an attractor.

Next(i)←− max
LH

(arg min
d(·)

(max
%i

(H(G)) \ P (ih))).

{Note that each subagent of the same agent is made to point to the same
house.}

13: For each cycle C, compute α = min(h′,ih)∈C w(h′, i).
14: for each h ∈ C do
15: In cycle C, jh′ points to h which points to subagent ih.

w((h), ih)←− w((h), ih)− α.

w((h), jh)←− w((h), ih) + α.

{although jh′ was in the cycle and pointing to h, when the exchange happens,
the fraction α of h is given to subagent jh because only subagent jh that
corresponds to house h keeps ownership of h}.

16: end for
17: Re-adjust the graph (this includes deleting any edge (h, i) if w(h, i) = x(i)(h) =

0).
18: Readjust set of attractors if needed.
19: end while
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In FTTC, based on the graph, we can identify absorbing sets of vertices
where an absorbing set is a strongly connected component of a graph with no
arcs going outside the component. Those absorbing sets that do not contain
a good cycle are deleted from the graph. The deletion can be interpreted as
finalizing the allocation of the houses in the absorbing set.2 After deleting non-
good absorbing sets (if any), we implement trades of houses among the agents.
In order to implement trades, we make each vertex point to exactly one other
vertex. Like the mechanisms by Jaramillo and Manjunath [12] and Plaxton [18],
a (sub)agent points to a house which has the shortest path to an attractor.
However, since a house can be owned fractionally by various agents, we need
to induce a second tie-breaking order LN over the agents so that if a house has
multiple (sub)agents pointing to it, it points to the one with the highest priority.
Since each vertex has outdegree one, a cycle exists. Furthermore, since vertices
point in the direction of attractors, we identify good cycles. We can then trade
the maximum possible units of houses in the cycle. In each trade, agents involved
in the trade replace some units of a house by equal number of units of a house
that is at least as preferred. FTTC is described formally as Algorithm 1. An
important observation is that when the houses of an absorbing set are removed
then all houses that are equally preferred by at least one agent are removed as
well.

Example 2 (Illustration of FTTC). Consider the following housing market
(N ′, H,%, e) where N = {1, 2, 3}, H = {a, b, c}, The endowment assignment
can be represented as follows:

e =

 0 0.99 0.01
0.99 0 0.01
0.01 0.01 0.98

 .

1 : a, c, b

2 : b, a, c

3 : b, a, c

Firstly, FTTC forms subagents: N∗ = {1a, 1b, 1c, 2a, 2b, 2c, 3a, 3b, 3c}. Suppose
that LN = 1, 2, 3 and LH = a, b, c. Then, the first good cycle encountered is
a, 2a, b, 1b which leads to an exchange of 0.99 units of houses a and b between
agent 1 and 2.

x =

0.99 0 0.01
0 0.99 0.01

0.01 0.01 0.98

 .

2 Just like the GATTC mechanism [6], absorbing sets are computed but instead of
deleting paired-symmetric (sets in which each pair of vertices point at each other)
absorbing sets, those absorbing sets are deleted that do not contain a good cycle.
Note that in the case of GATTC, both conditions are equivalent but in the case of
fractional endowments, one also needs to consider how many units of a house are
pointing to a particular agent.
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After this tentative assignment x, there is no good cycle among the subagents
and the whole graph is a strongly connected absorbing set. Hence, x is in fact
the final assignment.

When dealing with trades, a concern may be that even if the algorithm ter-
minates, it may converge to an efficient solution very slowly. A natural approach
is to ‘discretize’ a fractional assignment problem by breaking each house into
a small enough mini-house. However, this approach can lead to an exponential
blowup. Next, we show that FTTC terminates in time polynomial in m and n.

Theorem 1. FTTC terminates in time O(m3n4).

5 Axiomatic Properties of FTTC

We examine the axiomatic properties satisfied by FTTC. Firstly, we observe
that during each trade in FTTC the agents’ allocation gets an SD-improvement
because for each agent in a trade, some units of a house are replaced by an equal
units of a house that is at least as preferred. Hence SD-individually rationality
is easily satisfied.

Theorem 2. FTTC is SD-individually rational.

Theorem 3. FTTC is SD-efficient.

In what follows, we will prove that FTTC also SD-core stable. In order to
make the argument, we present a connection with an associated cloned housing
market. For a given fractional housing market (N,H,%, e) and a small enough
ε > 0, the associated cloned housing market with respect to ε is a housing
market (N,H ′,%′, e′) where N ′ consists of subagents of agents in N , each agent
in N ′ is endowed with exactly ε units of a single house, and the sum of the
endowments of the subagents of an agent is equal to the endowment of the
agent. For a cloned market (N,H ′,%′, e′) and its assignment x′, its corresponding
assignment for the original market (N,H,%, e) is assignment x such that x(i) =∑

j subagent of i x
′(j).

Lemma 1. If the assignment x′ of the cloned housing market is core stable, the
corresponding assignment x in the original fractional housing market is SD-core
stable.

We can then use Lemma 1 to prove that FTTC is SD-core stable.

Theorem 4. FTTC is SD-core stable.

The desirable aspect of FTTC is that under discrete and single-unit endow-
ments, it additionally satisfies other desirable properties such as strategyproof-
ness and strict core stability.
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Fig. 1. Illustration of the graph during the running of FTTC. The graph in the
first step admits a good cycle that is highlighted in bold red. Since the graph in
the second step admits no good cycle and since the whole graph is an absorbing
set, hence the assignment corresponding to the graph is finalized.
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Theorem 5. For the classic housing markets with indifferences (with discrete
and single-unit endowments), FTTC is core stable, Pareto optimal, and strict
core stable (if the strict core is non-empty), and strategyproof.

Proof. Whenever e(i)(h) ∈ {0, 1} and
∑

h∈H e(i)(o) = 1 for each i ∈ N , we know
that whenever a good cycle is implemented, α = 1 which means that a complete
house is exchanged since each agent owns a single complete house. Hence is easily
seen that FTTC is a GATTC mechanism as defined in [6]. It follows there for
that for discrete and single unit endowments, it is core stable, Pareto optimal
and strict core stable (if the strict core is non-empty). As for strategyproofness,
note that good cycles are implemented exactly as by the algorithm of Plaxton
[18]. Thus strategyproofness is also ensured. Note that for the classic housing
market with indifferences, each house is possessed by at most one agent at any
point. Therefore, the tie-breaking over the set of agents is redundant. ut

Corollary 1. For the classic housing markets without indifferences, FTTC is
equivalent to the TTC mechanism.

Proof. The statement follows from the fact that GATTC coincides with TTC
for strict preferences and discrete endowments. ut

Note that as long as each agent is endowed one house and each house has
the same number of units in the market, then FTTC runs in the same way as if
there was one unit of each house in the market. Hence, FTTC is strategyproof
as long as each agent is endowed one house and each house has the same number
of units in the market.

As a result of Theorem 4, and Corollary 1, FTTC constitutes a generalization
of TTC that still satisfies core stability in the fractional setting. FTTC also gen-
eralizes the ATTC mechanism [11] for housing markets with strict preferences,
discrete but multi-unit endowments.

Theorem 6. For the housing markets with strict preferences, discrete but multi-
unit endowments, FTTC is equivalent to the ATTC mechanism.

Proof. Note that ATTC is equivalent to first forming a cloned housing market in
which each subagent of an agent owns exactly one house and then running TTC
over the cloned housing market. Equivalently, when endowments are discrete and
preferences are strict, then FTTC runs in exactly the same manner. ut

An interesting corollary of Theorem 6 is that manipulating FTTC with re-
spect to SD is NP-hard.

Corollary 2. Manipulating FTTC with respect to SD is NP-hard.

Proof. Fujita et al. [11] showed that manipulating ATTC is NP-hard for agents
with lexicographic preferences. The same proof can also be used to show that
manipulating ATTC is NP-hard for agents with strict preferences over houses
that are extended to fractional allocations via stochastic dominance. Since FTTC
coincides with ATTC for strict preferences and discrete endowments, it follows
that manipulating FTTC with respect to both DL (lexicographic preferences)
and SD is NP-hard. ut
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6 Impossibilities

We showed that FTTC is SD-core stable. It is also known that the CC rule
satisfies NJE. This raises the question whether FTTC which is SD-core stable
can additionally satisfy no justified envy or whether CC satisfies SD-core sta-
bility. Next we show that no justified envy and SD-core stability are in fact
incompatible.

Theorem 7. There exists no mechanism that satisfies both SD-core stability and
no justified envy even for single unit allocations and endowments.

Proof. Consider the following housing market (N,H,%, e) where N = {1, 2, 3},
H = {a, b, c}, The endowment assignment can be represented as follows:

e =

1 0 0
0 0 1
0 1 0

 .

1 : c, b, a

2 : a, b, c

3 : a, b, c

The only core stable assignment is one which both agent 1 and 2 gets one

unit of their most preferred house: x =

0 0 1
1 0 0
0 1 0

 .

But in assignment x, agent 3 has justified envy towards agent 2 because
x(2) �SD

3 x(3) and x(3) %2 e(2). ut

Corollary 3. FTTC does not satisfy no justified envy.

Corollary 4. CC is not SD-core stable

One may wonder whether FTTC is weak SD-strategyproof. We show that
this is impossible because there cannot exist an SD-efficient, SD-individually
rational and weak SD-strategyproof mechanism. The theorem below answers a
question raised by Athanassoglou and Sethuraman [2].

Theorem 8. There does not exist a weak SD-strategyproof, SD-efficient and
SD-individually rational fractional housing market mechanism even for single
unit allocations and endowments.

Corollary 5. There does not exist a weak SD-strategyproof, SD-efficient and
SD-core stable fractional housing market mechanism.

We also get as corollaries previous impossibility results in the literature:

Corollary 6 (Theorem 4, Yilmaz [29]). There does not exist an SD-IR,
SD-efficient, weak SD-strategyproof, and weak SD-envy-free fractional housing
market mechanism.
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Corollary 7 (Theorem 2, Athanassoglou and Sethuraman [2]). There
does not exist an SD-IR, SD-efficient, weak justified envy-free and weak SD-
strategyproof fractional housing market mechanism.

Corollary 8 (Theorem 3, Athanassoglou and Sethuraman [2]). There
does not exist an SD-IR, SD-efficient, and SD-strategyproof fractional housing
market mechanism.

We remark that the three properties used in Theorem 8 are independent
from each other.SD-efficiency and weak SD-strategypoofness can be simultane-
ously satisfied by the multi-unit eating probabilistic serial mechanism [5, 13] if
preferences are strict. SD-individual rationality and weak SD-strategyproofness
(even SD-strategyproofness) are satisfied by the mechanism that returns the
endowment. SD-individual rationality (even SD-core) and SD-efficiency are sat-
isfied by FTTC.

One may hope that the strict core is non-empty for dichotomous preferences.
Unfortunately, this is not the case even if fractional allocations are allowed.
The following example shows that for the housing markets with dichotomous
preferences, the strict core can be empty for both fractional allocations and
discrete allocations.

Example 3. Consider the following housing market (N ′, H,%, e) where N =
{1, 2, 3, 4, 5}, H = {h1, h2, h3, h4, h5}, e(i)(hi) = 1 and zero otherwise. The set
of approved houses for each agent are as follows: max%1

(H) = {h1, h2, h4};
max%2

(H) = {h3}, max%3
(H) = {h1}; max%4

(H) = {h5}, max%5
(H) = {h1}.

Then it is clear that agent 1 can toggle between enabling cooperation between
h2 and h3 or h4 and h5.

7 Discussion and Conclusions

CC FTTC

SD-individual rationality + +
SD-core stability – +

weak SD-strategyproof – –

no justified envy + –

polynomial-time + +

Table 2. Properties satisfied by mechanisms for allocation of houses under frac-
tional endowments.

In this paper, we proposed a general mechanism for housing markets with
fractional endowments. Just as TTC is SD-efficient and SD-core stable for the
discrete single-unit domain, FTTC satisfies the same properties on the more
general domain. Since FTTC is SD-core stable and the Controlled Consuming
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(CC) algorithm of Athanassoglou and Sethuraman [2] is not, FTTC has at least
one advantage over a previously introduced mechanism for fractional housing
markets. However it cannot additionally satisfy no justified envy because the
property is incompatible with SD-core stability. Whereas CC coincides with
the PS algorithm of Bogomolnaia and Moulin [10] under equal endowments,
FTTC does not. On the other hand, FTTC coincides with the TTC under full
endowments but CC does not. Table 2 summarizes the properties satisfied by
CC and FTTC.

Note that the FTTC can be easily extended to the case where some houses
are not endowments: simply make each agent have endowment 1/n of each public
house or give the houses to the agent(s) with the highest priority. In this way,
FTTC can also be used as an interesting way to allocate houses when none of
the agents are endowed: initially give 1/n of each house to each agent and then
run FTTC on the created housing market. The outcome is SD-proportional as
defined by Aziz et al. [7].

FTTC can also be adapted to cater for agents expressing some houses as
unacceptable: agents are never made to point to unacceptable houses. We also
note that when agents have discrete endowments, then all our positive results
with respect to SD carry over to positive results when agents have preferences
over sets of houses via the responsive set extension [4, 8, 20].

We showed that FTTC is not weak SD-strategyproof. It will be interesting to
identify restricted preferences or domains under which FTTC is strategyproof.
In particular, we conjecture that FTTC is strategyproof for 0-1 utilities.

Acknowledgments The author thanks Péter Biró, Nicholas Mattei and Timo
Mennle for useful comments.
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25. T. Sönmez and M. U. Ünver. Matching, allocation, and exchange of discrete re-
sources. In J. Benhabib, M. O. Jackson, and A. Bisin, editors, Handbook of Social
Economics, volume 1, chapter 17, pages 781–852. Elsevier, 2011.

26. A. Sonoda, T. Todo, H. Sun, and M. Yokoo. Two case studies for trading multiple
indivisible goods with indifferences. In Proceedings of the 28th AAAI Conference
on Artificial Intelligence (AAAI), pages 791–797. AAAI Press, 2014.

27. R. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on
Computing, 1(2):146–160, 1972.

16



28. T. Todo, H. Sun, and M. Yokoo. Strategyproof exchange with multiple private
endowments. In Proceedings of the 28th AAAI Conference on Artificial Intelligence
(AAAI), pages 805–811. AAAI Press, 2014.

29. O. Yilmaz. The probabilistic serial mechanism with private endowments. Games
and Economic Behavior, 69(2):475–491, 2010.

17



Proof of Theorem 1

Proof. In each iteration of the algorithm, absorbing sets are computed which
takes linear time on the graph O(nm). Furthermore, it can be checked in linear
time whether a given absorbing set is non-good or not by checking whether a
subagent points to a strictly more preferred house or not. If there exists at least
one non-good absorbing set at least some vertices are deleted are from the graph
(in Step 9) which means that there can be at most O(nm) iterations.

In case there is no non-good absorbing set, we show that implementing a cycle
cannot happen indefinitely and that after O(m2n2) cycles are implemented, there
may not remain any good cycle or at least a non-good absorbing set appears. If
there does not exist a non-good absorbing set, there is at least one good cycle
in the graph. All vertices other than attractors are made to point to vertices
with the shortest distance to some attractor. This means that in each good cycle
C, there is at least one attractor. If each time an attractor loses all the weight
α of the house he owns, there can be at most O(mn) cycles until there exists
no good cycle. Now let us assume that we encounter a series of cycles in which
no attractor completely loses his house. We show there can be only a bounded
number of such cycles.

If cycles are repeated and no attractor loses all of his house, this means that
no attractor can become a non-attractor. A non-attractor subagent who loses
his house does not become an attractor by definition since an attractor ih owns
non-zero fraction of h. It may be the case be that a non-attractor subagent ih
who did not have any units of h may gain a fraction of house h due to his fellow
subagent getting a most preferred house h. But this means that ih is not an
attractor since it is already partially owns a maximally preferred house in the
graph. Thus no non-attractor becomes an attractor and no attractor becomes
a non-attractor in these series of cycles. Note that the weights of some edges
change, and the distance values of the vertices in the graph can only increase
because edges towards attractors are deleted. Let the cycle include the sequence
i′h′ , h, ih, h

∗, jh∗ where i is the agent with the shortest path to an attractor who
loses his ownership of h since h now points to a subagent of i′ instead of i. Since
h∗ was not completely taken away from jh∗ , it still points to jh∗ that still points
to the same most preferred house with shortest distance to an attractor that he
was pointing to before implementing the cycle. Hence the distance value of h∗

does not change. After the cycle is implemented, there is no longer a shortest
path of i′h′ to an attractor that includes h and ih. One way, subagents of i′

may have a path i′h′ , h, ih, . . . , towards an attractor is if ih again gets ownership
of some fraction of h from some other cycle. But note that ih as well as all
other subagents of ih were uniquely being made to point to h∗ and they will
keep pointing to h∗ until h∗ is no more in the graph or the distance value of h∗

changes. Hence these kinds of cycles can occur at most mn times before there
are no paths from i′ to an attractor. Therefore, there can be at most O(m2n2)
implementations of such cycles before there is no path from a non-attractor to
an attractor whereafter every good cycle only involves attractors. This means
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that we have now encountered a non-good absorbing set and also that each good
cycle involves an attractor losing all of his partial ownership.

Therefore after at most O(m2n3) cycles at least one non-good absorbing set is
encountered and there can be at most O(mn) absorbing sets that can be deleted
which means that the algorithm runs in time O(m3n4) . ut

A Proof of Theorem 3

Given random assignments x and y, x(i) %DL
i y(i) i.e., an agent i DL (downward

lexicographic) prefers allocation x(i) to y(i) if x(i) 6= y(i) and for the most
preferred house h such that x(i)(h) 6= y(i)(h), we have that x(i)(h) > y(i)(h).
Next, we prove that FTTC returns a DL-efficient assignment which implies SD-
efficiency. In order to prove it, we use the following lemma.

Lemma 2. Assume that y(i) %DL
i x(i) for all i ∈ N . Also for each S ∈

{E1
i , . . . , E

ki
i },

∑
h∈S y(i)(h) ≤

∑
h∈S x(i)(h). Then y(i) ∼DL

i x(i) for all i ∈ N .

Theorem 9. FTTC is DL-efficient.

Proof. Let the assignment returned by FTTC be x. Assume for contradiction
that x is not DL-efficient. Then, there exists an assignment y such that y(i) %DL

i

x(i) for all i ∈ N and y(i) �DL
i x(i) for some i ∈ N . Let the absorbing sets with

no good cycle during the running of FTTC be S1, . . . So. Let the most preferred
houses in St for agent be max%i

(St). For any set of equally preferred house H ′,
let Ei(H

′) = {h ∈ H : h ∼i h
′ ∈ H ′}. Let J(t) be the following statement:

J(t): for the t-th non-good absorbing set encountered during the running
of FTTC,

y(i)(Ei(max
%i

(St))) ≤ x(i)(Ei(max
%i

(St))).

We prove by induction that J(1), . . . , J(o) hold.

Base Case J(1) is the following statement: for the 1-st absorbing set,
y(i)(max%i

(S1)) ≤ x(i)(max%i
(S1)) for all i who have a subagent in S1. Note

that each i who has subagent in S1 points to all the houses in the first equivalence
class. Moreover all such houses are in S1 or else S1 would not be an absorbing
set. Since y(i) %DL

i x(i) for all i ∈ N , it follows that for agents represented in
S1, each agent gets at least as much units of his first equivalence class in y as
in x. Since all the houses in S1 are allocated to agents represented in S1 and
since each of the agents only get units of their most preferred houses, if one of
the represented agents gets strictly more units of his first equivalence class, then
it means that at least one represented agent in S1 gets less units of his first
equivalence class. But this is not possible since y(i) %DL

i x(i) for all i ∈ N .
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Induction Assume J(1) to J(`) holds. When FTTC consider S`+1, all the
houses in S1 to S` are fixed and each of the represented agents in those sets get
exactly the same units of their most preferred equivalence classes as in x. We
now focus on S`+1. Note that each i who has a subagent in S`+1 points to all
the most preferred houses that have not been deleted (and whose allocations
have not been finalized). Moreover all such houses are in S`+1 or else S`+1

would not be an absorbing set. Since J(1) to J(`) holds and y(i) %DL
i x(i) for

all i ∈ N , it follows that for agents represented in S`+1, each agent gets at
least as much units of his current equivalence class in y as in x. Since all the
houses in S`+1 are allocated to agents represented in S`+1 and since each of the
agents only get units of their most preferred remaining houses, if one of the
represented agents strictly more units of his current maximal equivalence class,
then it means that at least one represented agent in S1 gets less units of his
current maximal equivalence class. But this is not possible since y(i) %DL

i x(i)
for all i ∈ N .

Hence, we have shown that for each S ∈ {E1
i , . . . , E

ki
i },

∑
h∈S y(i)(h) ≤∑

h∈S x(i)(h). Since we assumed that y(i) %DL
i x(i) for all i ∈ N , by Lemma 2,

we get that y(i) ∼DL
i x(i) for all i ∈ N . This is a contradiction because we

assumed that y(i) %DL
i x(i) for all i ∈ N and y(i) �DL

i x(i) for some i ∈ N . ut

Proof of Theorem 4

Proof. Let ε be greatest common divisor of fractional allocations of the houses to
agents in allocation x. We first view FTTC as a discrete algorithm in which each
agent is represented by sufficient number of clones and each clone owns exactly
one mini-house where the sizes of all mini-houses is the same. Thus there may
be many clones of agent i corresponding to each subagent of agent i. During
the running of FTTC, when a subagent ih and h a most preferred house in the
graph are removed from a non-good absorbing set with w(h, ih) = λ, we will
view this as λ/ε clones of i being removed from the graph. At that point the
allocation of the clones is fixed in the discrete view of the algorithm and the
allocation of h for the subagent ih and hence of i is fixed in the actual view of
the FTTC algorithm. Then, when a clone’s allocation is fixed in FTTC, then it
cannot be part of any weakly blocking coalition since it gets a most preferred
mini-house in the graph. So for the base case, the subagents whose allocation
is fixed in the first non-good absorbing set cannot be part of a weakly blocking
coalition. Now by the same argument, given that subagents whose allocations
have already been set will not be part of the weakly blocking coalition, then the
next subset of subagents whose allocation gets fixed will not be part of a weakly
blocking coalition. By induction, no agent will be a member of a weakly blocking
coalition. Thus we have proved that the assignment x′ for the cloned housing
market is core stable.

Since the cloned assignment x′ is core stable, it follows from Lemma 1 that
the assignment x returned by FTTC is SD-core stable. ut
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Proof of Theorem 8

We first prove Lemma 1.

Proof. We show that if x is not core stable, then x′ is not core stable. If there
exists a coalition S ⊂ N weakly blocking x, then each of the agents in i ∈ S
gets an SD-better outcome y(i) by simply trading among the agents in S. For
each agent in i ∈ S, let us compare y(i) with x(i). We know that y(i) �SD

i

x(i) %SD
i e(i). For each i ∈ S, consider the most preferred equivalence class E

such that y(i)(E) > x(i)(E). The extra probability weight of E that i gets is
because of the endowment of other agents in S. Thus for each i ∈ S, there exists
some h ∈ E such that y(i)(h) > x(i)(h) ≥ e(i)(h). Let each agent i ∈ S point
to another agent j such that e(j)(h) > 0. Since each agent i ∈ S got a strict
SD-improvement in y(i) over x(i), this means that each agent points to at least
some other agent. Hence there exists a cycle C among a subset S′ ⊂ S in which
in which each agent i gives up ε units of a house less preferred than h and owned
by j in e(j) and gets ε units of h. Now consider the set S′ consisting of one
clone each of agents in S where each clone in S′ can get strictly more preferred
mini-house in cloned assignment y′ where the mini-house was originally owned
by a clone of an agent j ∈ S. Hence the cloned agents in S′ form a coalition
weakly blocking assignment x′. This means that the assignment x′ is not core
stable. ut

Next, we present the proof of Theorem 8.

Proof. Consider the housing market (N,H,%, e) where N = {1, 2, 3, 4, 5}, H =
{h1, h2, h3, h4, h5}, the preference profile % is

%1: h3, h1, h2, h4, h5

%2: h5, h1, h2, h3, h4

%3: h1, h4, h2, h3, h5

%4: h2, h4, h1, h3, h5

%5: h5, h3, h1, h2, h4

and

e =


1/2 1/2 0 0 0
0 0 1/2 0 1/2

1/2 0 0 1/2 0
0 1/2 0 1/2 0
0 0 1/2 0 1/2

 .

Assume that agents 3, 4 and 5 do not misreport. We show that in this case
they get exactly their endowment under some weak constraints on the preferences
of agents 1 and 2.

In any SD-individually rational assignment, agent 3 gets at least 1/2 of h1
and remaining weight of h4 to sum up to one unit. Similarly, agent 4 gets at least
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1/2 of h2 and remaining weight of h4 to sum up to one unit. Agents 3 and 4 can
get more of their most preferred house if they can exchange their second most
preferred house h4 for more of their most preferred house. However, as long as
h4 is less preferred than h1, h2, h3 for agent 1, h4 is the least preferred for agent
2 and agent 5, then no agent will be willing to get more of h4 and give either h1
or h2 to agents 3 and 4.

Hence agent 3 and 4 get exactly their endowment as long as agents 3, 4, 5
report truthfully, agent 2 reports h4 as his least preferred house, and agent 1
expresses h4 as a house less preferred than h1, h2, h3.

Due to the SD-individually rationality requirement, agent 5 has to get at
least 1/2 of h5 and the remaining of h3 to get a total of one unit. Agent 5 cannot
get more than 1/2 of h5 because agent 2 must get 1/2 of h5 as well. We conclude
that agent 5 gets exactly 1/2 of h5 as long as agent 2 expressed h5 as his most
preferred house. Due to SD-IR, agent 5 must get exactly his endowment as long
as agent 2 expressed h5 as his most preferred house.

Thus we have established that agents 3, 4, 5 get exactly their endowment as
long as the following conditions hold:

– agents 3, 4, 5 report truthfully
– agent 2 reports h4 as his least preferred house
– agent 2 reports h5 as his most preferred house
– agent 1 expresses h4 as a house less preferred than h1, h2, h3.

From now on, we will consider preference profile in which the conditions
above are met so that by SD-IR, we get that agents 3, 4, 5 get exactly their
endowments.

Assuming that agents 3, 4, 5 get the same allocation as their endowment,
agent 1 must get 1/2 of h3 in any SD-efficient assignment. Thus the only SD-
individually rational and SD-efficient assignments for profiles satisfying the con-
ditions above:

x =


1/2 0 1/2 0 0
0 1/2 0 0 1/2

1/2 0 0 1/2 0
0 1/2 0 1/2 0
0 0 1/2 0 1/2

 ,

y =


0 1/2 1/2 0 0

1/2 0 0 0 1/2
1/2 0 0 1/2 0
0 1/2 0 1/2 0
0 0 1/2 0 1/2

 ,

and

z =


λ 1/2− λ 1/2 0 0

1/2− λ λ 0 0 1/2
1/2 0 0 1/2 0
0 1/2 0 1/2 0
0 0 1/2 0 1/2
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for 0 < λ < 1/2.
If the outcome is assignment x, then agent 2 can report %′2:

%1: h3, h1, h2, . . .

%′2: h5, h1, h3, h2, h4

The only SD-individually rational and SD-efficient outcome of (%1,%′2,%3,%4

,%5) is assignment y which is an SD-improvement for agent 2 over the truthful
outcome x.

If the outcome is assignment y, then agent 1 can report %′1:

%′1: h1, h3, h2, . . .

%2: h5, h1, h2, h3, h4

The only SD-individually rational and SD-efficient outcome of (%′1,%2,%3,%4

,%5) is assignment x which is an SD-improvement for agent 1 over the truthful
outcome y.

If the outcome is of type assignment z, then agent 1 can report %′1:

%′1: h1, h3, h2, . . .

%2: h5, h1, h2, h3, h4

The only SD-individually rational and SD-efficient outcome of (%′1,%2,%3,%4

,%5) is assignment x which is an SD-improvement for agent 1 over the truthful
outcome z. ut
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