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1 Introduction

One conventional method for overcoming network line congestion constraint is to em-
ploy distributed diesel generators. Although these are costly to operate, they may be
less expensive than network upgrades in the short term. An example of a setting where
such an option is employed is Bruny Island, Tasmania, Australia. Here, the cost of up-
grading the congested line is prohibitive because it is an undersea cable that services
a small number of customers. However, the network peak load is exacerbated by the
location’s popularity as a holiday destination. On the positive side, Bruny Is, like most
of Australia, has excellent solar resources. Moreover, in the presence of low feed-in
tariffs, combined battery-PV systems installed behind the meter are becoming a viable
cost-saving investment for some electricity customers. This represents an opportunity
for innovative distribution network service providers (DNSPs) that wish to harness the
value of these, and other, distributed energy resources (DER), as a credible alternative
option to overcoming a network constraint.1 Although there are significant engineering
challenges to overcome before such a system can be deployed, the question of how to
reward DERs participating in such a scheme quickly arises.

Given this context, this paper investigates non-linear pricing for network support
provided by behind-the-meter DER such as residential batteries, based on cooperative
game solution concepts [1–4]. A cooperative game models a problems where a group of
players cooperate to earn a joint reward, which has to be apportioned among the players
in a fair and stable way. Specifically, these games are used to model strategic situations
involving rational, self-interested agents that can form binding contracts with one an-
other to pursue a common action. It is the ability to commit to a course of action that
distinguishes cooperative games from the more-widely known non-cooperative game
formulation.

In particular, we focus on the Shapley value, a cooperative value division rule de-
veloped in the game theory literature [5–7]. It is implemented as follows: a coalition
of agents is paid a fixed sum for satisfactorily completing a task. At the same time, to
complete the task, each agent incurs some private cost. Any cooperative solution to the
problem allocates payoffs to each agent in such a way that certain desirable criteria are
met. For the Shapley value, these criteria are: efficiency, the full payment is allocated;

1 For more detail, see http://brunybatterytrial.org/



symmetry, identical DER are allocated the same amount; additivity, if an agent is in-
volved in two separable games at once, its allocation is the sum of its payoffs in the two
games separately; and, a null player who contributes nothing to the coalition receive
zero payoff. In addition, and by design, the Shapley value is unique and always exists,
which is uncommon for cooperative solution concepts.

This model and its solution can be straightforwardly mapped to the demand re-
sponse setting, as follows. A coalition of DERs, probably coordinated by an aggrega-
tion service, is paid a fixed sum by a DNSP to provide enough load relief to overcome a
predicted thermal constraint excursion. In practise, the battery owners agree to perform
some optimal joint network support action using a form of distributed optimisation and
control platform, and here we use the approach described in [8].2 For completing this
action, the cooperative system as a whole receives a reward in the form of a payment
from the DNSP,3 which we reasonably expect to be determined by a network monopoly
regulating body, such as the Australian Energy Regulator. At the same time, each DER
owner incurs some private cost, in the form of energy cost savings foregone, round-
trip losses due to charge and discharge inefficiencies, and device degradation. Thus,
the players in the cooperative game are DER owners, and the payment to the coalition
has to be divided among the DER owners — and for this we investigate the use of the
Shapley value.

However, the Shapley value is defined as the average marginal contribution over the
set of all possible sub-coalitions of all N participating agents, of which there are 2N .
In general this is an unwhieldy number of computations to make for coalitions of size
greater than 25. It is all the more difficult in our distribution network demand response
scenario, because each marginal contribution computation involves solving a hard opti-
misation problem. Accordingly, we turn to approximations of the Shapley value using
sampling and search techniques. In particular, attention is directed to the class of simple
games, which are those with a binary outcome representing the success or failure of
a coalition in achieving its task. This binary formulation naturally represents the col-
lective actions of a coalition of battery-owning households that either can or cannot
overcome a hard network constraint. By exploiting this structure, we search or sam-
ple the graphs of coalition addition operations in an efficient way to quickly produce
accurate approximations of the Shapley value.

This paper is structured as follows:

– In the next section, cooperative games are defined, and links to the electricity net-
work support problem domain are made explicit.

– In Section 3, the Shapley value is introduced. We also identify the complications
that arise when this solution concept is applied to real-world problems, especially
computational issues, and strategies to mitigate them are canvassed.

– Section 4 describes in detail how a cooperative game characateristic function is
generated from un underlying optimisation problem. Two network representations
are discussed, namely, a copper plate and an single-phase AC network, and the

2 In the CONSORT project joint actions are computed using network aware coordinate (NAC)
algorithms [9], facilitated by Reposit Power’s distributed control platform (see: http://www.
repositpower.com/).

3 The DNSP in the CONSORT project is TasNetworks.



common features and differences of the characateristic function for these two are
identified.

– In Section 5, we present two small demonstrations to illustrate the reward sharing
methods that we have developed. This includes a demonstration of a simple sample-
based method for approximating the Shapley value. These are small enough to al-
low explicit demonstration, while allowing us to examine the relationship of the
Shapley value to other pricing methods such as locational marginal pricing.

– Section 6 concludes.

2 Cooperative Games

Cooperative games model surplus division problems, in which a group of players that
has agreed to cooperate to earn a joint reward also has to decide how it is allocated
among them. That is, cooperative game theory is used to analyse which coalitions will
form in a given setting, and how a coalition should divide its reward among its mem-
bers. Thus, the problem one faces in analysing a cooperative game is to find a division
of the rewards earned by a coalition that ensures stability of the coalition, or achieves
some distributional goals (fairness, proportionality, etc). Here, we deal with an insti-
tutional arrangement that proscribes a single coalition forming — this is the coalition
contracted to perform the demand response by the DNSP. As such we focus on distri-
butional considerations, and can ignore issues of coalitional stability.

2.1 Preliminaries

We begin with some basic terminology, which can be found in most game theory texts
covering cooperative games (e.g. [2]); the foundations of cooperative games are laid out
in [1].

If the players in a cooperative game agree to work together, they form a coalition. If
all N player form a coalition, it is called the grand coalition. Each player incurs some
private cost in completing its component of the joint action, while collectively, the joint
action has some worth associated with it (i.e. revenue). The difference between the sum
of the players costs’ and the worth is called the coalition’s surplus. The task is to divide
the surplus in such a way to ensure that the coalition is stable. This means that no
other smaller coalition could deviate to form a new coalition that can also complete the
joint action, but divides its surplus in a way that (weakly) improves the allocation to all
players in the new coalition. Beyond this broad and loose definition, many refinements
to the permissible set of deviations and desirable characteristics of the final surplus
division have been proposed, giving rise to a surfeit of solution concepts.

Formally, we consider the class of transferable utility (TU) games, which are coop-
erative games that allow payments between players (cf. non-transferable utility games).

Definition 1. A TU game is given by Γ = 〈N,w〉 where:

– N is a set of |N| players, and
– w(S) is a characteristic function, w : 2|N|→R+ with w( /0) = 0, that maps from each

possible coalition S⊆ N to the worth of S.



It is important to note that the characteristic function implicitly assumes that the players
follow an optimal joint action — and in practice computing this optimal action can be
difficult.4

Also, note that the characteristic function is defined on the powerset of the players,
and as such, w can have a very large domain, even for small numbers of players.

2.2 Simple Games

We are interested in a specific class of TU games called simple games.

Definition 2. A simple TU game 〈N,w〉 is given by a characteristic function w : 2|N|→
{0,1}, where w is monotonic and w( /0) = 0. A coalition S⊆N is succeeding if w(S) = 1
and failing if w(S) = 0.

Simple games are typically applied to voting problems, were they are used to mea-
sure the relative power of blocks of voters. However, the network support setting we
are considering also has a natural simple game structure, where a coalition is succeed-
ing if it is able to overcome the network constraint. Note that this simple structure is
dissolved if we move to a probabilistic setting, where there is load uncertainty, and
where the coalition may wish to maximise the probability of overcoming the network
constraint. On the other hand, this can be turned back into a simple game by assuming
a probability threshold needs to be exceeded for the coalition to succeed. Regardless
of these details, simple games will form a foundational model for examining Shapley
value below.

3 Cooperative Solution Concepts

Solution concepts in cooperative game theory define divisions of the group reward
among players, while considering the rewards available to each alternative coalition
of players.

3.1 Characteristics of Cooperative Solutions

Before defining the Shapley value, we first formally define some important characteris-
tics of any solution to a TU game.

Definition 3. Given a Γ, a solution concept defines a payoff to each player, which is a
vector of transfers (payments), t = (t1, . . . , ti, . . . , t|N|) ∈ RI .

We denote the sum of payoffs as ∑i∈S ti = t(S). Some desirable properties of solu-
tions concepts include the following; a solution is:

– Feasible if t(S) ≤ w(S), meaning the total of all the payoffs is less than the coali-
tion’s worth,

4 This is indeed the case in the CONSORT project, where the optimisation problem will ulti-
mately involve solving a three-phase unbalanced multi-period optimal power flow problem.
However, this is not the problem tackled in this paper.



– Efficient if t(S) = w(S), so that payoff vector exactly divides the coalitions worth,
– Individually rational if ti ≥ w(i) for all i ∈ N, meaning the payoff of a player is at

least what it can get by acting alone.
– Symmetric if ti = t j if w(S∪{i}) = w(S∪{ j}), ∀ S ⊆ N \ {i, j}. This means that

equal payments are made to symmetric players, where symmetry means that we
can exchange one player for the other in any coalition that contains only one of the
players and not change the coalition’s worth. This property is also called anonymity,
because the players’ labels do not affect their payoff.

– Additive if for any two additive games the solution can be given by ti(v1 + v2) =
ti(v1) + ti(v2) for all players. That is, an additive solution assigns payoffs to the
players in the combined game that are the sum of their payoffs in the two individual
games.

– Zero payoff to a null player if a player i in w that contributes nothing to any coali-
tion, such that w(S∪ {i}) = w(S) for all S, then the player receives a payoff of
0.

We consider the Shapley value solution, although there exist others, such as: the
stable set [1]; the core, with its modern application to cooperative games and present
terminology due to [10]; relaxations of the core to the ε-core and the least core [11];
the nucleolus [12, 13]; and semi- and quasi-values, which relax some technical charac-
teristics of values [14, 15].

Finally, note that we follow Myerson [16, 17] and assume that only one ”institu-
tional” coalition may form. Specifically, this is the coalition from which the network
purchases the load relief actions, and its players are the only ones that can share the
dividend of the cooperative action.

3.2 The Shapley Value

The first and most widely-known value is the Shapley value [5–7].

Definition 4. The Shapley value allocates to player i in a coalitional game 〈w,N)〉 the
payoff:

φi(w) = ∑
S⊆N\{i}

|S|! (n−|S|−1)!
n!

(w(S∪{i})−w(S)) (1)

Here, the value function φ has the following intuitive interpretation: consider a coali-
tion being formed by adding one player at a time. When i joins the coalition S, its
marginal contribution is given by w(S∪{i})−w(S). This is the last part of the expres-
sion above. Then, for each player, its Shapley value payoff is the average of its marginal
contributions over the possible different orders (or permutations) in which the coalition
can be formed. In simple games, given one permutation of players, we call the player
that makes the coalition successful when it is added the pivot of the order.

For example, consider a very simple situation where only three households have
batteries installed, but this is enough to overcome the network constraint. This gives
rise to eight possible sub-coalitions of battery owners. Some of these sub-coalitions
satisfy the constraint, others do not. A fixed operational budget is allocated for paying



Fig. 1. The coalition graph for N = {A,B,C}, showing the possible single-agent additions that
grow a coalition to form the grand coaltion, with the coalition size indicated above.

the battery owners for overcoming the constraint, and the DNSP will allocate the entire
budget amount.

This is illustrated in the coalition graph in Fig 1 above, where green boxes show suc-
cessful coalitions, green lines show marginally successful DER additions. To compute
the Shapley value, count the additions that lead to success: #A = 1, #B = 4, #C = 1.
These values are normalised according to (1) to get the Shapley value proportions of

the DNSP’s budget: φ = (
1
6
,

2
3
,

1
6
). So if the DNSP has allocated a budget of b = $200

to overcoming a constraint during a peak event, ti = φi ∗ b, so that A receives $33, B
gets $134 and C is paid $33, reflecting the number of coalitions to which their addition
makes the cooperative endeavour successful.

The Shapley value is an example of axiomatic theory. Specifically, it satisfies the
following four properties (defined earlier): (i) efficiency, (ii) symmetry, (iii) additivity,
and (iv) zero payoff to a null player. In fact, the Shapley value is the unique map from
the set of all games to payoff vectors that satisfies all four properties (i), (ii), (iii), and
(iv) above. The combination of properties (ii) and (iii) is often referred to collectively
as a fairness axiom.5 When applied to simple games, the Shapley value is often called
the Shapley-Shubik power index [6], reflecting its use in the analysis of voting power in
committees and legislatures.

Some related work is surveyed briefly below. An early application of cooperative
game ideas of to the closely related problem of communications network pricing is
given in [18]. A more recent effort links cost to an upper percentile contribution to
communications network load [19]. Recent applications of cooperative games to prob-
lems in power systems can be found in [3, 4]. More generally, Moulin has a series of
papers on the topic of fair cost and surplus allocations, especially with respect to ca-
pacity network problems and congestion, including [20, 21]. Of particular relevance,
[22] apply the Shapley value to computing demand response payments, but their model

5 Also, in games where the core is not empty, the Shapley value is in the core, and can be
considered the centre of gravity of the core.



is generic and not applied to specific power system problem. In contrast we build our
cooperative model up from an explicit network optimization problem.

3.3 Computation and Approximations

As noted above, approximations are required for computing the Shapley value, because
the number of sub-coalitions to evaluate increases exponentially with N; that is, as the
number of combinations of players in the coalition graph grows rapidly. Moreover,
exact computation requires enumerating all sub-coalitions, but this is prohibitively ex-
pensive for even moderate-sized N, and more so when each sub-coalition worth is itself
expensive to compute (as is the case for the power flow-based evaluations underlying
the NAC algorithms undertaken in the CONSORT project, which is the application that
motivates this work). In order to overcome this challenge, we have developed strategies
for reducing the computation burden of computing payoffs to participating DERs. The
motivating works for these approaches are stated briefly below, with a more complete
treatment left for the full length paper.

To begin, a recent overview of standard approaches to computing solutions to coop-
erative games is given in [23]. In particular, reinforcement learning and sample-based
approaches to estimating the payoffs are being employed in our work. A early Monte
Carlo approach to computing the Shapley value in simple games is the Mann-Shapley
algorithm [24]. Randomised approaches to computing the Shapley and other power in-
dices in simple games were analysed by [25], and proved that randomly sampling per-
mutations and averaging the marginal contributions constitutes an unbiased estimator
of the agents’ true Shapley values. A more recent example of this approach in the con-
text of general monotonic cooperative games can be found in [22]. For monotonic game
cases, we are developing more sophisticated search and exploration methods, including
methods from multi-armed bandit problems [26] and search methods that exploit the
monotonicity of the network support game’s characteristic function, following [27, 28].

We now show how to derive the characteristic function for the cooperative problem
of DERs that are used for network load relief.

4 Optimization-based Cooperative Game

The problem we tackle is to use residential batteries to overcome a network thermal con-
straint, and to pay them according to their value to the DNSP. In this section, we first
define the specific underlying optimisation problem, and describe the way counterfac-
tual cases are computed, thereby defining the characteristic function of the cooperative
game model. Ultimately, the characteristic function is used to calculate the marginal
contributions, w(S∪{i})−w(S), in (1).

4.1 Constrained Network Optimisation Model

We model the collective problem as using N batteries to solve a quadratic program
(QP) that minimises the sum of squared power flows through the constrained network
element around the time of the expected peak. In practise, this smooths the load during



the control period, with the quadratic penalty placing greater emphasis on trimming
peaks than lowering the average load. This typically results in a load with a buffer is
between the predicted peak flow and the constraint limit, and also allows us to use the
computational power of commercial mathematical programming solvers. An alternative
approach would be to minimise the maximum power flow through the constrained line
directly. However this approach requires the use of variational inequalities or other,
more complicated, problem formulations that are not as efficiently solved as one with a
quadratic objective, or to rely on hueristics. Given that our ultimate goal is computation
of the Shapley value, which requires a very large number of these problems to be solved,
we adopt the quadratic programming approach detailed below.

Specifically, at the time of the peak, we expect S = N so that all available batteries
participate in overcoming the constraint. In more detail, a grand coalition N collectively
minimises the following objective:

min
Ω

∑
k∈K∗

x2
k (2)

where xk is the power flowing through the constrained network line during time slot
k, and Ω is the set of control variables. In this paper, the (not yet explicitly stated)
control variables are the battery change/discharge decisions, but in general, this set may
also include other automated or human-controlled devices, such as hot water cylinders,
clothes dryers and air conditioners. The time slots k ∈K∗ indicate times of the expected
peak, possibly non-contiguous, and perhaps with some buffers to prevent a ”rebound”
peak also overwhelming the constraint.

Minimisation of this objective is subject the operating and energy balance con-
straints of the flexible load and storage devices in question, and also other pertinent
physical network contraints. In more detail, the coupling of all loads and controllable
devices at time slot k in order to compute the value of xk is formulated differently for
different models of the network. Here we describe both copper-plate and a single-phase
AC network representations, but our results are only for the copper-plate network.

In the simpler case, we assume a copper-plate model of the network below the
congested line. Given this, the coupling constraint linking all loads may be given by the
linear constraints, for each k = 1, . . . ,24:

xk = xuc
k + ∑

i∈N
xi,k (3)

where xuc
k is the background uncontrolled load of all customers not participating in the

DR scheme, while for each i ∈ N,

xi,k = xuc
i,k− xpv

i,k + xb
i,k (4)

is the net load of household i, that is, uncontrolled load, xuc
i,k, less local PV genera-

tion, xpv
i,k plus (minus) battery charge (discharge), xb

i,k. A complete description of this
formulation of the problem is omitted for brevity, but can be found in [8], where the
constraints used to model the batteries include binary variables are used to capture dif-
ferences in charge and discharge efficiencies, which are themselves treated as constants.
However, because these are linear constraints, as are all other constraints in the problem



formulation, the optimisation problem is a mixed-integer quadratic program (MIQP),
which may be solved efficiently using many commercial and open-source mathematical
programming solvers. 6

In the AC power flow case, the customers are connnected at a range of load buses,
and likewise, the background load is apportioned across them. Then load at the con-
strained line is coupled to the net customer and background uncontrolled loads through
a set of non-linear constraints capturing the effects of losses and voltage and power
angle differences across the lines, etc, of the network. Accordingly, this problem is a
non-linear mixed integer program NLMIP. The presence of additional network con-
traints may affect the feasible set of DER control options, for example, by limited
a battery’s power output when a bus voltage is at its upper limit. Again, for sake of
brevity and to maintain our focus on the cooperative game we a deriving, we refer the
interested reader to [29] and the references therein for ways to efficiently formulate
the AC network representations and solve instances of this class of OPF problem. Non-
twithstanding that, as is well understood, these network details considerably complicate
computation. Nonetheless, we are able to solve these problems using commercial and
open-source non-linear program solvers. Note that the customer net-load copuling con-
straint (4) remains the same in both formulations.

In the remainder, we refer to the two network model cases above as the copper-plate
and AC power flow models, and their corresponding formulations as MIQP and NLMIP,
respectively.

4.2 Computing Counterfactual Load Profiles

When computing the counterfactual effects of fewer batteries contributing load relief
to the network, which are needed for calculating the Shapley value, we have S ⊂ N
strictly. In these fictitious cases, we recompute problem (2) for S, subject now to an ap-
propriately altered set of coupling constraints. In particular, this does not mean that the
uncooperative batteries can be ignored. Instead, we must also model their self-interested
behaviour around the time of the peak load. Specifically, we do this by treating them as
individuals, following Myerson, that each separately maximise the value of operating
their batteries by load-shifting.

For this, we use a mixed integer linear program (MILP), to simulate the individual
batteries contribution to the peak, each with an objective given by:

min
24

∑
k=1

pi,k x+i,k (5)

where the operating and energy balance constraints of each of the storage devices are the
same as in the MIQP above. Here, x+i,k are the positive values of (4) across the entire day,
multiplied by a time-of-use charge at rate pi,k. This represents the battery owner using
its device to minimise its costs by maximising self-consumption of locally generated

6 Note in [8], the MIQP captures the typically increasing marginal costs of running a conven-
tional generator or diesel genset, while here we use the quadratic objective purely as a penalty
function that drives load below the thermal power limit across the time interval of interest.



PV and/or by pre-charging the battery from the grid to power it during peak pricing
periods. This objective is used to approximate the effects of very low feed-in-tariffs in
Australia (5-8c/kWh vs 20-60c/kWh retail) by assuming they are not worth anything at
all.

Thus, to generate a characteristic function for the cooperative game model (in or-
der to calculate the Shapley value), we must compute the counter-factual power flows,
xk(S), that would have occurred if some agents j ∈ N \ S were excluded from coop-
erating in the demand response scheme. To do this, the problem in (5) is solved for
each non-participating individual and the power they draw from the network, xLP

j,k. In
the copper-plate case, the non-participants’ loads are added into the coupling constraint
in (3) in the same way as background load; that is, for each k = 1, . . . ,24:

xk(S) = ∑
i∈S

(
xuc

i,k− xpv
i,k + xb

i,k

)
+ xuc

k + ∑
j∈N\S

xLP
j,k (6)

Then the MIQP is solved for the coalition S using the device contraints for i ∈ S and the
coupling constraints above.

In the AC power flow case, the load profile xLP
j,k computed in the same way, but it is

added to the load bus corresponding to the customer’s location. The new NLMIP is then
solved for the coalition S using the device contraints for i ∈ S and the existing network
power flow constraints.

4.3 The Cooperative Characteristic Function

Finally, given a thermal constraint encoded as a 30 minute-hour energy limit, Emax, the
worth of a coalition, S, is given by the threshold function:

w(S) =

{
1 if xk(S)< Emaxfor all k = 1, . . . ,24
0 if xk(S)≥ Emaxfor any k = 1, . . . ,24

(7)

Taken as a whole over all S⊆N, the threshold function (7) and the underlying optimisa-
tion problems define the simple characteristic function for the cooperative game model,
and are used to compute the Shapley value.

4.4 Sample-based Approximation of the Shapley Value

For large numbers of agents, exact computation of the Shapley value becaomes in-
tractable. Even for the simplest of simple characteristic functions, such as arise in
weighted voting games, exactly computing the Shapley value for more than 25 agents
is close to intractable in any reasonalble amount of time. However, for these settings,
sample-based approximations of the Shapley value have considerable appeal. While
early demonstrations of this approach demonstrated its usefulness [24], here, we rely
on a simple sampling scheme, which was recently shown to provide an unbiased esti-
mator of the Shapley value in all simple games [25].

In more detail, the procedure begins by initialising the (vector) estimate of the Shap-
ley value to zero for each agent. Each sample then involves randomly sampling a per-
mutation of agents, and finding the pivotal agent for that permutation. Note that this step



can require solving up several of the underlying schedule optimisation problems. Once
the pivotal agent it found, it has a value of 1 added to its entry in the value estimate.
Finally, after a sufficiently large number of samples, the vector is normalised to sum to
one, with the result providing an unbiased estimate of the Shapley value.

In the demonstration section below, we use this simple procedure to estimate the
Shapley value for the cooperative load relief problem with 12 agents.

5 Demonstration

In this section, the Shapley value is used to provide value-reflective non-linear pricing
to battery owners participating in a load relief demand response scheme. Specifically,
we present the results of two small, preliminary tests of the pricing method, and dis-
cuss their significance. We also p[ovide some prelimary evidence supporting the use of
sample-based approximation methods. The results here only regard the coppoer-plate
model; while a key element of our future work will be to explore efficient ways to com-
pute the Shapley value in the AC power flow case, where the underlying optimisation
problem is significantly more difficult to solve.

5.1 Scenario Description

In both scenarios, DER agents control batteries with two different capacities and pow-
ers, 5kWh/2.5kW or 10.5kWh/5kW. Each household also has a unique uncontrolled
load profile and residential rooftop PV generation profile, using data collected by Aus-
grid, a distribution network company in Sydney, Australia, and surrounds.7 These val-
ues are incorporated into the coupling constraints (3). The background load on the net-
work is given by historical NSW system load for Friday 10 February, 2017, which was
a system peak requiring significant load curtailment to resolve a supply shortfall.8 In all
cases, the constrained line limit is 135kW, which is exceeded by 4.6kW at uncontrolled
the peak.

5.2 Demonstration Results and Discussion

The Shapley value is computed for three problems. Problem 1 contains 3 agents, Prob-
lem 2 has 12, and Problem 3 has 20.

Problem 1: Three agents In this scenario, two customers, agents 1 and 3, have the
smaller 5kWh/2.5kW systems, agent 2 has a 10.5kwh/5kW system. Due to the small
size of this problem, exact computation of the Shapley value is possible, so approxima-
tion is not required.

7 Available from: http://www.ausgrid.com.au/Common/About-us/
Corporate-information/Data-to-share/Solar-home-electricity-data.aspx

8 This data is available from the Australian Energy Market Operator: https://www.
aemo.com.au/Electricity/National-Electricity-Market-NEM/Data-dashboard#
aggregated-data
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Fig. 2. Shapley value for three agents in Problem 1.

The values to each agent participating in the DR scheme primarily reflects their
battery capacity and power. This is seen in Fig. 2, and can be interpreted as meaning
that adding Agent 2 is pivotal to four out of six permutations (orderings) of the three
players, while Agents 1 and 3 are pivotal in only one of six orders each. Also note that
although there is some variability in baseline energy use between the agents, this does
not affect their reward according to the Shapley values.

The network profiles for different sub-coalitions around the time of the congestion
are plotted in Fig. 3. These show that three sub-coalitions are successful, which corre-
sponds to the computed φ.

Problem 2: Twelve agents In problem 2, three agents, 1, 3 and 5, have the smaller
5kWh/2.5kW battery systems, while the remainder have the larger 10.5kwh/5kW sys-
tems. Although exact computation of the Shapley value is possible for this setting, it is
very time consuming. Accordingly, we use it as a good case to examine and compare
exact and approximate methods.

Results for both approaches are shown in Fig. 4, where the bars indicate the exact
values, and the points are estimtes with error bars indicating two standard deviations
around the mean.

We first consider the exact values. Again, the values to each DER agent reflect
their battery capacity and power, with the three lower valued agents having the smaller
systems, as illustrated in Fig. 4. However, note that although the agents have some
variability in their baseline energy use, this does not appear to affect the exact values.
Also, compared to Problem 1, we observe that the values of the agents controlling high-
and low-power batteries have less variation between them when there are more agents
involved. This reflects the fact that as the number of agents becomes very large, the
Shapley value tends to competitive market price uniformly for all agents. Nonetheless,
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Fig. 3. Load profiles for optimal load relief by all six sub-coalitions in the copper-plate model,
with the line limit indicated.

Fig. 4. Shapley value for twelve agents in Problem 2. Bars are the reults from exact computation
of the value; while points with error bars indicate the values approximated from 2000 permutation
samples.



in the future, when we move to explicitly consider AC network losses and other line
constraints, we expect to act as new sources of variation between the agents” Shapley
values. This is akin to the way location marginal prices are generated from Lagrange
multipliers of constraint equations in optimal power flow problems.
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Fig. 5. Plot of the maximum hourly average power vs coalition size for Problem 2. The lines
indicates the range of values, and crosses mark the mean for each coalition size.

Fig. 5 shows how the coalition size affects the performance of the load relief system
(based on the results for exact computation). From this, see that all coalitions of size 4
and greater are successful. Note that the slow trend up for larger coalition sizes appears
to be due energy consumed by the inefficiencies of battery storage.

We now consider the approximate values, generated from 2000 samples of permu-
tations of agents, and indicated by the red points and error bars on Fig. 4. Most impor-
tantly, the point estimates and errors are largely consistent with the values computed
by the exact computation. This is evidence that the variability around the exact values
is due to sampling errors rather than any systematic problem with the approximation
procedure. However, is should be clear that 2000 samples is insufficient to statistically
discrimiate between the values of DER agents with higher- and lower-powered batter-
ies. As such, one aspecct of our future work is to investigate the required sample size to
provide the requisite degree of accuracy in the estimates to make such a discrimiation
possible.

Comparison to Lagrange multipliers The results above illustrate why simple linear
pricing based on incremental contributions, as given by Lagrange multipliers, to over-
coming the line constraint are not appropriate when more than enough battery support is
contracted or delivered. Specifically, in Problem 2, the Lagrange multipliers of the line
constraints in the MIQP with twelve agents is zero. Thus, by this pricing the constraint



using Lagrange multipliers, each would be paid nothing. This is clearly inappropriate
way to reward battery owners for delivering load relief.

6 Summary

We investigated non-linear pricing for network support provided by behind-the-meter
DER, such as residential batteries, based on the Shapley value solution. In doing so we
demonstrated how an electricity network support problem is used to generate a cooper-
ative game characteristic function from the bottom up. We identified the complications
that arise when the Shapley value is applied to real-world problems, especially com-
putational issues, and strategies to mitigate them are canvassed. Finally, we illustrated
how a characteristic function is computed from a concrete problem of using batteries
for load relief in the presence of line congestion, in order to calculate the Shapley value.
We then presented results for two small demonstrations, to illustrate the usefulness of
the Shapley value in these domains. These problems are small enough to allow explicit
demonstration, while allowing us to examine the relationship of the Shapley value to
other pricing methods. In particular, we illustrated why incremental cost-based meth-
ods, such as locational marginal pricing, are not appropriate for computing payments to
battery owners when excess capacity is purchased or supplied. In contrast the Shapley
value is an ideal method for computing payments in these settings.
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