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Abstract. We tackle fair multi-agent optimization problems and use a
generalized Gini index to determine a fair and efficient solution. We claim
that considering mixed solutions (i.e., lotteries over solutions) enables to
enhance the fairness of an optimal solution. Interpreting a fair multi-
agent optimization problem as a zero-sum two-player game between an
optimization player choosing a solution and an adversary which has some
control over the payoffs of the game, we propose two methods (a cutting-
plane method and a double oracle method) to compute an optimal mixed
solution. Numerical tests are provided to compare their efficiency.

1 Introduction

Multiagent optimization deals with problems where multiple agents are involved
in the choice of a feasible solution. Multiagent optimization procedures are re-
quired in many problems, such as proportional representation (typically winner
determination under the Chamberlin-Courant multiwinner voting rules, which
determines a set of representatives minimizing the total dissatisfaction of the
voters [22]), group recommendation (e.g., movies to put on a plane’s entertain-
ment system [21]), fair division of indivisible goods [14], or paper assignment
problems (assigning reviewers to conference paper submissions [10]).

We are more especially interested here in fair multiagent optimization, i.e. in
procedures favoring solutions that fairly share satisfaction among agents. There
are several ways of formalizing “fairness”. We mean here by fair optimization
that, when considering the vector of agent’s satisfactions, it should be both
Pareto optimal (i.e., the satisfaction of an agent cannot be improved without
decreasing that of another agent) and well-balanced (in a sense to be formalized
later). Nevertheless, due to conflicting agents’ preferences, all feasible solutions
can be unfair to some extent. In this concern, randomness can help to “even
things out”, by determining a probability distribution over feasible solutions
(called a mixed solution in the game theoretic terminology) instead of looking
for a fair deterministic solution (a fair pure solution) that might not exist.

Example 1 (Machina’s mom [16]) A mother with two children has one in-
divisible treat. She can give it to either one of her children but not both. It is
reasonable to imagine that the mother would prefer tossing a coin to decide which
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child should have the treat instead of choosing herself (i.e., choosing between the
two feasible pure assignments where a child receives the treat while the other has
nothing), so that both children have equal chances of having the treat.

Randomization has mainly been studied for the assignment problem where,
given n objects and n agents with individual preferences on the objects, one
wishes to assign exactly one object to each agent in a fair and efficient manner.
An extension of mom’s approach to this problem with n agents is called the ran-
dom serial dictatorship procedure: order the agents uniformly at random, and
let them successively choose an object in that order [1]. This procedure induces a
bistochastic matrix P = (pij) where pij is the probability that agent i obtains ob-
ject j. By the Birkhoff-von Neumann theorem, matrix P may be represented by a
probability distribution over pure assignments (i.e., a mixed assignment) whose
inferred allocation probabilities coincide with pij . Note that other sophisticated
random assignment rules can be found in the literature [4, 12]. These approaches
are however hard to transpose to other multiagent optimization problems.

The notion of popular mixed assignment can nevertheless be transposed to
any multiagent optimization problem. A mixed assignment p is popular if there
is no assignment q such that the expected number of agents who prefer the
outcome of q to that of p is greater than n/2 [13]. By the minimax theorem, a
popular mixed assignment always exists, and Kavitha et al. proposed a linear
programming approach to compute it in polynomial time. Regarding fairness,
Aziz et al. [2] have shown that there always exists a popular mixed assignment
that satisfies equal treatment of equals, i.e. agents with identical preferences re-
ceive identical random allocations. Equal treatment of equals is considered as a
“minimal test for fairness” [19].

Yet, the choice of a popular mixed solution does not preclude the possibility
that a minority of agents are unsatisfied with all pure solutions considered in
that mixed solution. In this paper, following Lesca and Perny [15] and Endriss [8]
who also studied fair optimization but in a deterministic setting, we adopt the
viewpoint of the measurement of inequality [19] to compare vectors of agents’
expected utilities induced from mixed solutions. The Pigou-Dalton principle is
the basic postulate of inequality measurement. It states that transferring some
utility from one agent to another so as to reduce the difference in their welfare
should not reduce social welfare [19]. Our aim is to provide a procedure to
determine a mixed solution optimizing a criterion compatible with this principle.
In this concern, the generalized Gini inequality indices (a subclass of Ordered
Weighted Averages, abbreviated by OWA) are well-known to satisfy a number of
appealing fairness properties, among which the Pigou-Dalton principle [23]. In
the following, we provide two generic procedures for computing a mixed solution
optimizing a generalized Gini inequality index. They are both based on a game-
theoretic view of fair multiagent optimization problems. One procedure is a
cutting plane method [7] while the other is a double oracle algorithm [18].

The paper is organized as follows. Section 2 presents the randomized fair
optimization problem. A game-theoretic view is given in Section 3, which allows
us to derive two solution methods. Numerical tests are presented in Section 4.
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2 Fair Optimization with OWA

We adopt the same setting as in previous works dealing with inequality mea-
surement for fair multiagent optimization [8, 15]. Let P be a multiagent opti-
mization problem, and N = {1, . . . , n} the finite set of agents involved in P.
We denote by X ⊆ {0, 1}p the set of feasible solutions of P and we assume that
X={x ∈ {0, 1}p : Ax = b}1 where A is called constraint matrix and b is inte-
gral. A feasible solution of P is thus represented by a binary vector x ∈ X . Each
agent i is endowed with a utility function ui : X → R+ (to maximize, w.l.o.g.)
defined by ui(x) =

∑p
j=1 uijxj where uij is the utility of having xj = 1 for agent

i. Every solution x induces therefore a utility vector u(x) = (u1(x), . . . , un(x)).
To compare two vectors, one can use an aggregation criterion F : (R+)n → R
such that a vector x is weakly preferred to y if F (x) ≥ F (y).

2.1 The OWA Operator

We recall that the aim of fair multiagent optimization is to determine a solution
that is both efficient and fair. The concept of efficiency is captured by the notion
of Pareto-optimality:

Definition 1 A vector y Pareto-dominates a vector y′ if:

i) ∀i ∈ {1, . . . , n}, yi ≥ y′i ii) ∃i ∈ {1, . . . , n}, yi > y′i
A solution x is said to be Pareto-optimal in a set S of solutions iff there is no
x′ ∈ S such that u(x′) Pareto-dominates u(x).

An easy way to obtain a Pareto-optimal solution is to maximize a Weighted
Average (WA) of utilities:

Definition 2 Let w = (w1, w2, . . . wn) be a vector of weights. The WAw(·) oper-
ator induced by w is defined by: ∀x ∈ X , WAw(u(x)) =

∑n
i=1 wiui(x).

Optimizing a WA can often be performed very efficiently as it reduces the multi-
agent problem to a standard single criterion problem. However, such criterion
may lead to an unfair solution as this criterion compensates between the util-
ity scores of the different agents. For instance, for two agents and w = (1, 1),
the utility vector (1, 10) is preferred to (5, 5) for the WAw criterion. A natural
condition to model fairness is the Pigou-Dalton transfer principle [19]:

Definition 3 A criterion F satisfies the transfer principle if: F (u1, . . . , ui −
ε, . . . , uj+ε, . . . , un) > F (u1, . . . , un) for uj−ui < ε < ui−uj, for any u ∈ (R+)n.

This condition states that the overall satisfaction should be improved by any
transfer of utility from a “richer” agent to a “poorer” one.

A well known criterion satisfying the transfer principle and whose optimiza-
tion yields a Pareto-optimal solution is the generalized Gini inequality index [3].
This criterion is also known in multicriteria decision making under the name of
Ordered Weighted Average (OWA) [24].

1 Note that we adopt the convention to use bold letters to denote vectors.
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Definition 4 Let w = (w1, . . . , wn) be a vector of weights. The OWAw(·) operator
induced by w is defined by: ∀x ∈ X , OWAw(u(x)) =

∑n
i=1 wiuσ(i)(x), where σ is

the permutation of {1, . . . , n} such that uσ(1)(x) ≤ uσ(2)(x) ≤ . . . ≤ uσ(n)(x).

Importantly, note that the set of generalized Gini inequality indices is the
subclass of OWA operators where wi>wi+1 for i∈{1, . . . , n− 1}. This property
insures that the transfer principle holds. From now on, we restrict our attention
to this subclass of OWAs and weights wi’s are therefore assumed to be decreasing.

OWA operators are very general operators and encompass the average, the
minimum and the maximum operators. Moreover, when wi � wi+1 for all i, the
OWA operator behaves as the leximin operator [19].

We now recall the definition and some properties of Lorenz vectors, as think-
ing about OWA as an aggregation over the components of a Lorenz vector helps
provide further insights into the use of this operator for inequality measurement.

Definition 5 Given a vector y = (y1, . . . , yn), the Lorenz vector of y is defined
by L(y) = (l1(y), . . . , ln(y)), where li(y) is the sum of the i smallest elements
of y. More formally, let σ be the permutation of {1, . . . , n} such that yσ(1) ≤
yσ(2) ≤ . . . ≤ yσ(n), then li(y) =

∑i
j=1 yσ(j).

A vector y is said to Lorenz-dominate a vector y′ if L(y) Pareto-dominates
L(y′). In the bi-dimensional Cartesian coordinate system, the Lorenz curve as-
sociated with a vector y is the piecewise-linear curve connecting the points
(i/n, li(y)/ln(y)) for i = 0 to n, where l0(y) = 0. Graphically, a vector y Lorenz-
dominates a vector y′ iff the Lorenz curve of y is above the one of y′. Lorenz
dominance is a key concept in inequality measurement due to the following:

Theorem 1 [5] For any pair of positive vectors y,y′, if y Pareto-dominates y′,
or if y′ is obtained from y by a Pigou-Dalton transfer, then y Lorenz-dominates
y′. Conversely, if y Lorenz-dominates y′, then there exists a sequence of Pigou-
Dalton transfers and/or Pareto-improvements to transform y′ into y.

In other words, given two solutions x and x′, if u(x) Lorenz-dominates u(x′),
then x should be preferred to x′ from the viewpoint of efficiency and fairness.

Interestingly enough, an OWA operator can be rewritten as:

∀x ∈ X , OWAw(u(x)) =
∑n
i=1 λili(u(x))

where λ = (w1 − w2, w2 − w3, . . . , wn−1 − wn, wn). Thus, provided wi > wi+1

for i ∈ {1, . . . , n− 1}, a solution optimizing an OWA operator is always Lorenz
optimal (where Lorenz optimality is defined similarly to Pareto optimality).

The weights initially proposed for the Gini social-evaluation function are:

wi = (2(n− i) + 1)/n2 (1)

With these weights, OWAw(u(x)) has a nice graphical interpretation: indeed,
value 1 − OWAw(u(x))/µ, where µ =

∑n
i=1 ui(x)/n, equals two times the area

between the Lorenz curve of x and the diagonal representing the ideal distri-
bution of utilities (where ui(x) = µ for every agent). Obviously, for a given µ,
the narrower this area the better, which is consistent with the maximization of
OWA.
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Fig. 1: Lorenz curve and inequality
measurement.

Example 2 (Machina’s mom cont’)
Let us come back to Example 1. We have
X = {x ∈ {0, 1}2 : x1 + x2 = 1}, where
xi = 1 if child i receives the treat. There
are therefore two pure solutions x1 =
(1, 0) and x2 = (0, 1). We assume that
ui(x) = xi for i ∈ {1, 2} (the utility of i
is 1 if she receives the treat, 0 otherwise).
We have L(u(x1)) = L(u(x2)) = (0, 1).
The Lorenz curves associated with u(x1)
and u(x2) are therefore identical. They correspond to the bold curve in Figure 1.
The ideal distribution of utilities would be (0.5, 0.5), yielding a Lorenz vector
(0.5, 1). The Lorenz curve associated with this ideal distribution is the diagonal
in Figure 1. The surface of the area in light gray is an indicator of the level of
fairness.

2.2 The OWA Operator with Mixed Solutions

We now investigate the properties that hold for mixed solutions optimizing an
OWA operator. A mixed solution is a lottery over solutions in X and is denoted
by PX . The set of all possible mixed solutions is denoted by ∆X . Given a solution
PX , we denote by PX (x) the probability assigned to pure solution x. As usual,
the definition of a utility vector is extended by linearity to mixed solutions.
More formally, ui(PX ) =

∑
x∈X PX (x)ui(x). Note that an OWA optimal mixed

solution is always Pareto-optimal in ∆X , by compatibility of OWA with Pareto
dominance [9].

We now illustrate the enhanced abilities of OWA optimal mixed solutions
w.r.t. fairness, compared to pure solutions.

Example 3 (Machina’s mom cont’) Coming back again to Example 1, con-
sider pure solutions x1,x2 and the mixed solution PX defined by PX (xi) =
0.5 for i ∈ {1, 2}. If the weights wi are defined as in Equation 1, we have:

OWAw(u(x1)) = OWAw((1, 0)) = 0.75 · 0 + 0.25 · 1 = 0.25
OWAw(u(x2)) = OWAw((0, 1)) = 0.75 · 0 + 0.25 · 1 = 0.25
OWAw(u(PX )) = OWAw((0.5, 0.5)) = 0.75 · 0.5 + 0.25 · 0.5 = 0.5

because u(PX ) = 0.5u(x1) + 0.5u(x2) = (0.5, 0.5). The mixed solution PX is
therefore preferred to both pure solutions. This is not surprising as the Lorenz
curve associated with u(PX ) coincides with the diagonal.

As witnessed by this example, for mixed solutions in allocation problems,
the Pigou-Dalton principle guarantees the desirable property of equal treatment
of equals (more precisely, there always exists an optimal mixed solution where
agents with equal preferences receive the same random allocation), which is of
course not the case in pure strategies.

In the next section, we turn to the question of computing an OWA optimal
mixed solution.
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3 A Game-Theoretic View

To model the problem of determining an OWA optimal mixed solution as the
determination of a mixed Nash Equilibrium (NE) in a zero-sum two-player game,
the following observation, holding only for decreasing weights wi, reveals useful:

∀PX ∈ ∆X , OWAw(u(PX )) = minσ∈Σ WAwσ (u(PX ))

where Σ is the set of all permutations of {1, . . . , n} and wσ = (wσ(1), . . . , wσ(n)).
Thus, maximizing OWAw(u(PX )) amounts to the max min optimization problem:

maxPX∈∆X minσ∈Σ WAwσ (u(PX )).

This is exactly the problem faced by player 1 in the zero-sum two-player game
where the sets of pure strategies are the set of feasible solutions X for player
1 (also called x-player), the set of permutations Σ for player 2 (also called σ-
player), and the payoffs are given by values WAwσ (u(x)) for x ∈ X and σ ∈ Σ.
Similarly to the x-player, we denote by PΣ a mixed strategy of the σ-player,
and by ∆Σ the set of all her mixed strategies. Note that the WA operator is
extended to mixed strategies by linearity:

WAwPΣ
(u(PX )) =

∑
x∈X

∑
σ∈Σ PX (x)PΣ(σ)WAwσ (u(x)).

Given any two-player zero-sum game, determining a mixed NE can be done
by linear programming [6]. Indeed, assume that player 1 (resp. player 2) has
k (resp. m) pure strategies and that Aij denotes the payoff of player 1 when
strategies i and j are played by respectively player 1 and player 2. Then, a
mixed NE of this game can be determined by the linear program PNE (NE for
Nash Equilibrium) given on the left below:



max
v,p1,...,pk

v

k∑
i=1

piAij≥v ∀j∈{1, . . . ,m}

k∑
i=1

pi = 1

v ∈ R pi ≥ 0 ∀i ∈ {1, . . . , k}

(2)



max
v,px:x∈X

v

n∑
i=1

wσ(i)(
∑
x∈X

pxui(x))≥v ∀σ∈Σ

∑
x∈X

px = 1

v ∈ R px ≥ 0 ∀x ∈ X

(3)

PNE PFO

where pi denotes the probability that player 1 selects pure strategy i and v
denotes the value of the game. In our setting, PNE is rewritten as program PFO
(FO for Fair Optimization), given on the right above, where constraints 3 are
just the specification of constraints 2 in PNE to our setting. However, program
PFO is too large to be solved directly as it involves an exponential number of
variables and constraints (|X |+ 1 variables and |Σ|+ 1 constraints).

3.1 Cutting Plane Method

The method proposed here is based on a reformulation of PFO that involves
a polynomial number of variables, by redefining the solution space. We recall
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that a solution x ∈ X is encoded by a vector of p binary variables. A mixed
solution PX thus induces a vector x̃ = (x̃1, . . . , x̃p) where x̃i =

∑
x∈X PX (x)xi.

We denote by Conv(X ) = {
∑

x∈X PX (x)x : PX ∈ ∆X } the convex hull of X .
Given x̃ ∈ Conv(X ), we say that PX implements x̃ if

∑
x∈X PX (x)x = x̃. By

Carathéodory’s theorem, for any x̃ ∈ Conv(X ) there exists a mixed solution
that implements it with a combination of at most p+ 1 pure solutions.

Example 4 Consider a one-to-one assignment problem with 3 agents. We de-
note by (i, j, k) the allocation where agents 1 (resp. 2, 3) receives object i (resp.
j, k). The set Conv(X ) includes here all bistochastic matrices of dimension 3.
The bistochastic matrix

x̃ =

0.8 0 0.2
0.2 0.3 0.5
0 0.7 0.3


can be implemented by the mixed solution PX where pure assignments (1, 2, 3),
(1, 3, 2) and (2, 3, 1) are returned with probabilities 0.3, 0.5 and 0.2 respectively.

Hence, for any fair multi-agent optimization problem, problem PFO can be
rewritten as follows:

P̃FO



max
v,x̃1,...,x̃p

v

v ≤
n∑
i=1

wσ(i)ui(x̃) ∀σ ∈ Σ

x̃ ∈ Conv(X )

(4)

(5)

because ui(x̃) =
∑

x∈X PX (x)ui(x) if PX implements x̃. Note that the lin-
earization used here for the OWA objective function (valid only if the weights
are decreasing) coincides with the one proposed by Ogryczak and Śliwiński [20];
by comparison, the above reasoning proves that determining an optimal mixed
solution amounts to determining an optimal solution in Conv(X ).

Even if the number of constraints in 4 (resp. in 5) is (resp. may be) expo-
nential in n (resp. p) as |Σ| = n! (resp. the number of facets of Conv(X ) may
be exponential in p), these constraints can be handled efficiently by resorting to
a cutting plane approach. A cutting plane approach makes it possible to solve a
linear program involving an exponential number of constraints to define a poly-
hedron P , provided there exists a separation oracle. In program P̃FO, polyhedron
P is defined by constraints 4 and 5. Given (v, x̃) ∈ R× [0, 1]p, a separation ora-
cle should determine whether (v, x̃) belongs to P or not, and finds a separating
hyperplane in the latter case. The separation oracle we propose consists of a sep-
aration oracle for the polyhedron P4 defined by constraints in 4 and a separation
oracle for the polyhedron P5 defined by constraints in 5:

– Given (v, x̃), a separation oracle for P4 consists in sorting values u1(x̃) . . . un(x̃)
to determine a permutation that minimizes

∑n
i=1 wσ(i)ui(x̃). Sorting these val-

ues can of course be performed in polynomial time. If v ≤
∑n
i=1 wσ(i)ui(x̃), then

x̃ belongs to P4, otherwise v =
∑n
i=1 wσ(i)ui(x̃) defines a separating hyperplane.

It amounts to generating a most violating constraint in 4, if any.
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– Regarding polyhedron P5, if we can optimize over X in polynomial time, then
we can separate over Conv(X ) in polynomial time by the polynomial time equiv-
alence of optimization and separation [11] (optimization → separation).

Combining both oracles yields a separation oracle for polyhedron P = P4 ∩ P5,
which is polynomial time if we can optimize over X in polynomial time. In
this case, the complexity of solving P̃FO is polynomial by the polynomial time
equivalence of optimization and separation (separation → optimization).

Once an OWA optimal solution x̃ ∈ Conv(X ) has been found, it remains to
actually compute a mixed solution in ∆X that implements x̃. For this purpose,
following Mastin et al. [17], we consider the linear program P∆̃→∆ below. Clearly,
a feasible solution of P∆̃→∆ induces a mixed solution PX that implements x̃, by
setting PX (x) = px. Nevertheless, this program has an exponential number of
variables (|X | variables px). To tackle this issue, we consider the dual program
D∆̃→∆ below, where w is the dual variable of constraint 7 and variables wi are
the dual variables of constraints in 6.

min
px:x∈X

0∑
x∈X

pxxi = x̃i ∀i ∈ {1, . . . , p}∑
x∈X

px = 1

px ≥ 0 ∀x ∈ X

(6)

(7)



max
w,u1,...,up

w −
p∑
i=1

x̃iwi

w ≤
p∑
i=1

wixi ∀x ∈ X

w ∈ R wi ∈ R ∀i ∈ {1, . . . , p}

(8)

(9)

P∆̃→∆ D∆̃→∆
The probability of a pure solution x in the resulting mixed solution is given

by the dual variable of the corresponding constraint in 8. The separation oracle
for constraints in 8 requires to solve the single objective minimization variant of
P where the cost of having xi = 1 is given by variable wi and where one aims
at minimizing the sum of costs. If this problem is polynomial, the complexity of
solving D∆̃→∆ is polynomial by the polynomial time equivalence of optimization
and separation (separation → optimization), and the mixed solution resulting
from the optimization is guaranteed to have a polynomially bounded support in
X (the support is the set of pure solutions with nonzero probability). By solving

successively P̃FO and D∆̃→∆, we conclude:

Theorem 2 Any randomized fair optimization problem whose single objective
optimization variant is polynomial in p is polynomially solvable in p and n.

This result applies for instance to fair multiagent one-to-one and many-to-
many allocation problems, and to fair multiagent matroid problems (where each
agent assigns a cost to each element of the ground set).

Note that the polynomial time equivalence of optimization and separation
is mainly a theoretical tool, since it is well known that the resulting algorithms
do not appear to be efficient in practice [7]. For the numerical tests presented
in Section 4, we therefore implemented a non-polynomial cutting plane method
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(but more efficient in practice) where constraints in 4 are iteratively generated
and constraints in 5 are explicitly listed, which is harmless if the constraint
matrix A is of polynomial size and is totally unimodular (TU). Indeed, if A is
TU, Conv(X ) is obtained by linear programming relaxation and thus the oracle
for P5 is unnecessary. In the next subsection, we present another algorithm to
solve the game induced by the randomized OWA optimization problem. This
algorithm has no polynomial time guarantee, but is competitive in practice even
if matrix A is not TU.

3.2 Double Oracle Algorithm

The game can be solved by specifying a double oracle algorithm adapted to
our problem. A double oracle algorithm finds an NE for a finite zero-sum two
player game where a best response procedure (also called oracle) exists for each
player. Given a mixed strategy PX (resp. PΣ), BRσ(PX ) (resp. BRx(PΣ)) re-
turns a pure strategy σ (resp. x) that minimizes WAwσ (u(PX )) (resp. maximizes
WAPΣ (u(x))). The algorithm starts by considering only small subsets Sx and Sσ
of pure strategies (singletons in Algorithm 1) for the x-player and the σ-player,
and then grows those sets in every iteration by applying the best-response oracles
to the current NE of the game G restricted to pure strategies in Sx and Sσ. At
each iteration, an NE (in mixed strategy) of the restricted game is computed via
linear program PFO (where Σ is replaced by Sσ in the definition of constraints
3 and X is replaced by Sx in the last line). Convergence is achieved when the
best-response oracles generate pure strategies that are already in sets Sx and
Sσ. In other words, convergence is obtained if for the current NE both players
cannot improve their strategies by looking outside the restricted game.

Algorithm 1: Double Oracle Algorithm

Data: Singletons Sx ={x} and Sσ={σ} including an arbitrary solution and an
arbitrary permutation

Result: a (possibly mixed) NE
1 converge ← False
2 while converge is False do
3 Find Nash equilibrium (PX , PΣ) ∈ G = (Sx, Sσ)
4 Find x = BRx(PΣ) and σ = BRσ(PX )
5 if x ∈ Sx and σ ∈ Sσ then converge ← True else add x to Sx and σ to Sσ

6 return (PX , PU )

The correctness of the double oracle algorithm for finite two-player zero-
sum games has been established by McMahan et al. [18]; the intuition for this
correctness is as follows. Once the algorithm converges, the current solution must
be an equilibrium of the game, because each player’s current strategy is a best
response to the other player’s current strategy. This stems from the fact that
the best-response oracle, which searches over all possible strategies, cannot find
anything better. Furthermore, the algorithm must converge, because at worst,
it will generate all pure strategies.
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Best response procedures. We now specify the proceduresBRx(·) andBRσ(·)
used in our double oracle algorithm. Given a mixed strategy PΣ of the σ-player,
BRx(PΣ) is a pure solution which maximizes

∑
σ∈Σ PΣ(σ)WAwσ (u(x)), which

can be rewritten as:∑
σ∈Σ PΣ(σ)

∑n
i=1 wσ(i)ui(x) =

∑n
i=1(

∑
σ∈Σ PΣ(σ)wσ(i))ui(x).

Thus, computing BRx(PΣ) amounts to solving problem P according to a WA
criterion with weights σ̃ defined by σ̃i =

∑
σ∈Σ PΣ(σ)wσ(i). Note that, as op-

timal solutions according to WA criteria are Pareto optimal, Pareto-dominated
solutions will not be generated by the algorithm. In other words, there will be
no irrelevant feasible solution added to set Sx.

We now turn to the best response procedure for the σ-player. Given a mixed
strategy PX of the x-player, BRσ(PX ) is a permutation in Σ which minimizes
WAwσ (u(PX )). Similarly to the separation oracle in the cutting plane method for

solving P̃FO, best response BRσ(PX ) can be computed by sorting vector u(PX ).
Interestingly, procedure BRσ(·) is independent of the problem P considered.

There is no polynomial guarantee on the number of iterations of this double
oracle algorithm. It will nevertheless reveal efficient in practice, as will be shown
by the numerical tests presented in the next section.

4 Numerical Tests

We tested our approaches on the one-to-one assignment problem with a number
n of agents varying from 50 to 300. Given an assignment x, the utility ui(x) is
given by the expression

∑n
j=1 uijxij where xij = 1 if agent i receives object j (0

otherwise) and uij is a scalar value giving the utility for agent i to receive object

j. For this problem, program P̃FO reads as follows (FOA for Fair Optimization
Assignment):

P̃FOA



max
v,x11,...,xnn

v

v ≤
n∑
i=1

pσ(i)

n∑
j=0

xijuij ∀σ ∈ Σ

n∑
j=1

xij = 1 ∀i ∈ {1, . . . , n}

n∑
i=1

xij = 1 ∀j ∈ {1, . . . , n}

xij ≥ 0 ∀i, j ∈ {1, . . . , n}
Both the separation oracle for P∆̃→∆ and the procedure BRx(·) in the double

oracle algorithm require to solve a standard assignment problem, which can be
performed in polynomial time using the Hungarian method [7].

Performances in computation times. We compare the solution times of
program P̃FOA, program P∆̃→∆ and the double oracle algorithm (abbreviated
by DO in the figures). For this purpose, we carried out numerical tests2 on

2 All methods were coded in C++ using Gurobi 5.6.3 as solver for the linear programs.
Times are wall-clock times on a 2.4 GHz Intel Core i5 machine with 8GB of RAM.
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randomly generated instances of increasing sizes. The weights wi used are the
ones given in Equation 1 and the utilities uij are uniformly drawn as positive
integer values in [1, U ]. In Figure 2(a), U is set to 20 while in Figure 2(b) it is set
to 30. For all values of n and U considered, the average computation times are less
than 10 seconds, which shows the practicality of the methods. On both figures,
we observe that the computation time first increases, reaches a peak and then
decreases. This phenomenon may be seen as a phase transition: if n � U it is
likely that there will exist a pure assignment x such that ui(x) = U for all agents

i. In that case, the three methods P̃FOA, P∆̃→∆ andDO will converge in very few
iterations. In both figures, we observe that the sequence of the peaks is identical:
DO first, P̃FOA second, and P∆̃→∆ third. Note that DO and P∆̃→∆ seem to

be more affected by an increase of U than P̃FOA. This can be explained by the
fact that both algorithms rely on an oracle method (the Hungarian method) the

complexity of which is O(n3), while the oracle used in P̃FOA is simply a sorting
algorithm. Therefore DO and P∆̃→∆ are more sensitive to an increase of the
number of calls to oracles. Lastly, the graphs clearly show that the choice of
the algorithm to use should be made according to the ratio n/U . If this ratio is

low (less than 5 for instance), one should prefer the combination of P̃FOA and
P∆̃→∆, while if it is higher, DO will be more efficient.
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(a) Costs are generated in [1, 20].
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(b) Costs are generated in [1, 30].

Fig. 2: Computation time (in seconds) as n increases. Results averaged on 20 instances.

5 Conclusion

We tackled the randomized version of fair multi-agent optimization problems
with a generalized Gini index as optimization criterion. Thanks to a game-
theoretic view of this problem, we proposed two solution methods based on
dynamic calls to oracles. The first method we studied (cutting plane method)
is polynomial time in p and n if the single objective optimization version is
polynomial in p. The second method we studied (double oracle method) has the
advantage to be operational for a broader class of problems. The numerical tests
carried out show the practicality of both methods. For future works, it would
be interesting to extend our results to fair multi-agent optimization problems
with Choquet integrals. Indeed, OWA operators are special cases of Choquet
integrals.
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