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Abstract. In this paper, we study the assignment problem with a bound
on group size. In particular, we link the assignment problem with finite
group size bound and positive group size bound to multi- and continuum-
marginal optimal transport (Monge-Kantorovich) problem and show the
existence of a stable assignment. Without demanding the compactness
and non-atomicness assumptions on agent space, we provide a clean
model as well as tools to unify a number of classical results including
the existence of fractional core, f-core and epsilon-sized core, and solve
the problem of continuum extension of Gale and Shapley’s work in [11]
proposed by Kaneko and Wooders in [16].

1 Introduction

In cooperative game (or TU-game) theory, it is a central question that,
given the surplus each subset of agents could generate, if there is a stable
way to divide the surplus. The stability here means no subset of agents
wish to deviate and generate a higher surplus. This notion of stability,
defined as core, was firstly proposed by Edgeworth [10] and then related
to game theoretic setting by Gillies [13].
Gale and Shapley [11] observed group size might be bounded exogenously
(e.g. in marriage market) and initiated the study of matching problem
and roommate problem in a non-transferable utility model. Later, Scarf
[21], Shapley and Shubik [24] studied its transferable utility counter-
part. Shapley and Shubik named this classic problem by “Assignment
Problem”. The work following this trajectory has been extensive, includ-
ing generalizations to large agent space in [14], [8], [5], [7]. These works
focused on the case when the group size is bounded by two. On the con-
trary, when there is no restrictions on the group size, Bondareva [2] and
Shapley [23] established existence results for a discrete agent space in a
transferable utility environment and Scarf [21] extended the results to a
non-transferable utility environment.
In this paper, we study something in the middle - assignment problem
with an arbitrarily given bound on group size. In particular, this size
bound could be a finite bound on the number of group members or a
positive bound on the measure of group members. The problem is stated
as following: given a space of agents (not necessarily finite or compact),
each subset of agents of bounded size, namely a group, is able to generate
a surplus which they could divide in any way within the group. An
assignment, generalized from a matching, is a plan instructing groups to



form. We say an assignment is stable if there is a way to divide payoffs
among agents such that this division is both feasible and that no group
has incentive to deviate by generating a higher surplus.
We show for any given bound on group size, whenever the surplus func-
tion is upper semi-continuous and bounded in a very mild sense, a stable
assignment always exists. In particular, we do not assume any relation-
ship between surplus functions on different sizes of groups. Consequently,
our model includes the case that a third person could strictly decrease
the surplus of a two-person group, and the resulting stable assignment
forms agents into groups of different sizes. On a technical level, contrary
to [15], [16], [14], we do not assume agent space to be compact or en-
dowed with a non-atomic measure, thus our result could be degenerated
to a finite type space.
The relationship between assignment problem and linear programming
problem was firstly introduced by Bondareva [2], Shapley [23], Scarf [21]
and Shapley and Shubik [24] in a discrete setting and later extended
by Gretsky, Ostroy and Zame [14] to a continuum setting. Both work
focused on the case that group size bound is exactly two. In addition,
Kaneko and Wooders in [16] and [15] studied the case when the group size
is bounded from above by a finite number and claimed the stable notion
exists in an approximate sense by exploring the compactness of agent
space. On a separate direction, Schmeilder [22] showed that core is an
invariant concept under positive group size bound. However, his elegant
proof relies on Lyapunov theorem, thus only working in an exchange
economy with finite dimensional commodities spaces but failing (as we
shall see in the paper) in the more general cooperative game setting this
paper studies.
Recently, Chiaporri, McCann, Nesheim and Pass in [8] and [7] analyzed
explicitly the relationship between matching problem and optimal trans-
port problem. In this paper, we explore in their direction. In particu-
lar, we link the problem with finite bound to a multi-marginal transport
problem and the problem with positive bound to a “continuum”-marginal
transport problem. While the classical 2-maringal problem is studied ex-
tensively as shown in Villani’s book [25], there are many gaps in the
general theories in multi- and “continuum”- marginal optimal transport
problem. Some partial results could be located in [18], [19], [20].
Similar to [14], we prove our theorems by establishing three propositions:
1. the existence of welfare maximizing assignment
2. the duality between welfare maximization and constrained utility

minimization
3. the equivalence of stable assignments and constrained utility mini-

mization
The first proposition corresponds to solution existence of Kantorovich
tranport problem. The second proposition corresponds to Kantorovich-
Koopmans duality. And the third proposition relates the concept of sta-
bility to the solution of minimization problem.
In conclusion, by linking the assignment problem with finite and posi-
tive bounds on group sizes to optimal transport problem, we unify and
generalize various previous results, including [21], [24], [14], [15], [8], on
core existence.



The paper is organized as follows. Section 2 introduces a model with a
finite size bound. Section 3 establishes and proves the existence result for
finite size bound case. Section 4 introduces a model with a positive size
bound. Section 5 establishes and proves the existence result for positive
size bound case. Section 6 summarizes the results and discusses possible
future work.

1.1 Notations

We list notations we used in this subsection:

Definition 1. For a complete separable metric space I, we define

– B(I): Borel sigma-algebra of I

– M+(I): the space of non-negative Borel measures on I

– P(I): the space of Borel probability measures on I

– Cb(I): Bounded continous functions on I.

– O(n): permutations of n elements. We identify them by maps from
In to In that permutes the coordinates.

– πn : IN → I: the projection operator on n-th coordinate, where n ≤
N .

Definition 2. For µ1, µ2 ∈M+(I), we say µ1 ≤ µ2 if for any A ∈ B(I),
we have µ1(A) ≤ µ2(A).

Definition 3. For a complete separable metric space I and a µ ∈M+(I),
µ 6= 0, define L1(I, µ) be the space of integrable functions, i.e.

∫
I
|f |dµ <

+∞ for any f ∈ L1(I, µ). When there is no confusion on underling
measure, we write the space as L1(I).

Definition 4. If µ is a Borel measure on X, T is a Borel map from X
to Y, then we denote the image measure (or push-forward measure) of µ
by T# such that for any A ∈ B(Y ),

T#µ(A) = µ(T−1(A))

In this paper, we will mainly use this definition in the following two ways:
Firstly, for a measurable set A ⊂ I, and a measure γn on In,

(π1)#γn(A) = γn(A, I, ..., I)

Secondly, for a permutation σn ∈ O(n), and a measure γn on In,A1, ..., An
are measurable sets on In, we have

(σn)#γn(A1, ..., An) = γn(Aσ(1), Aσ(2), ..., Aσ(n))

We will discuss in more details when we use any of them.



2 Model for groups of finite size

2.1 Environment

We study a cooperative game ((I, µ), v,N ′, N) defined as follows. Let
a Polish space 1 I be the type space of agents and µ ∈ P(I) be the
distribution of agents’ types.
In this section, we study the case when the size bounds are finite. We
use N ∈ N to denote the upper bound on group size and use N ′ ≤ N
where N ′ ∈ N to denote the lower bound on group size.
For N ′ ≤ n ≤ N , the set of groups of size n is identified by In,
where In is the n-folds Cartesian product of agent space I. Each element
C = (i1, ..., in) ∈ In corresponds to a group containing n agents of types
i1, ..., in. Note, as we treat I as the type space, we allow a group con-
tains multiple agents of the same type. Moreover. the ordering does not
matter when describing a group. That is, for any permutation σ ∈ O(n),
(i1, ..., in) and (iσ(1), ..., iσ(n)) refer to the same group. The metric on In

is the product metric induced from I. The set of groups is denoted by
∪Nn=N′In.
Next, we specify the surplus each group could generate by using a func-
tion. Mathematically, surplus function v : ∪Nn=N′In → R is a real-valued
function defined on the set of groups. For clarity, we express v by a tuple
(vN′ , ..., vN ), where vn is a real-valued function on groups of size n, In,
for N ′ ≤ n ≤ N . We will need the following assumptions on the surplus
function v:

(A1) v is component-wisely upper-semi continuous: For any N ′ ≤ n ≤ N ,
vn is upper semi-continuous. i.e.

∀Ck, C ∈ In, Ck → C, then, lim sup
k→∞

vn(Ck) ≤ vn(C)

(A2) v is symmetric: For anyN ′ ≤ n ≤ N , and any permutation σ ∈ O(n),
(i1, ..., in) ∈ In,

vn(i1, ..., in) = vn(iσ(1), ..., iσ(n))

(A3) v is bounded from above: For any N ′ ≤ n ≤ N , there is lower semi-
continuous functions an ∈ L1(µ) such that,

vn(i1, ..., in) ≤
n∑
j=1

an(ij)

The first assumption states the regularity requirement. Weaker than the
continuity requirement, this assumption allows us to take the case that
some groups have a discontinuously large surplus into account. The sec-
ond assumption states the consistency requirement: as (i1, ..., in) and

1 A Polish space is a separable completely metrizable space. Examples are, in the gen-
eral equilibrium setting, an agent’s type is denoted by (x, u) ∈ B×Cb(B), where B is
some bounded set determined by the total resources. When the underlining measure
on type distribution is non-atomic, the measure space is isomorphic to [0,1] endowed
with Lebesgue measure. Here, we do not impose the non-atomic requirement.



(iσ(1), ..., iσ(n)) denote the same set of agents, they have the same sur-
plus. The third assumption is a technical assumption guaranteeing the
integrability of the surplus function v. This assumption is not restrictive
as it is sufficient to assume vn is bounded from above by a constant.
Note we assume no relationship between surplus functions of different
coalition sizes. i.e. there is no relation between vn and vm when n 6= m.
Indeed, for any group, the advent of one more member may discontinu-
ously increase or decrease the surplus of this group. Thus, we do not rule
out externality here, and study a broader class of models than super-
additive games.
Indeed, the surplus of a group could have a jump (upward or downward)
when one agent outside the group joins or one agent in the group leaves.

2.2 Group assignment

We use assignment to describe the way agents are grouped. Note, similar
to Scarf’s work, we propose this notion in a random manner.
It is worth noting that assignment is defined to be a random measure in
this paper. In contrast to their notions about pure assignment in [11], [5]
in which all agents of the same type must be assigned in the same way,
our definition, similar to that in [21], [24],[16], [14], [8], allows assigning
different agents of the same type in different ways. For instance, as shown
in Figure 1, there are three types of agents and each type has a mass
1/3. When the group size is bounded above by 2, a pure assignment must
leave one person alone if a group of size 2 if formed. On the contrary, a
random assignment can assign half of type 1 to a group with type 2 and
half of type 1 to a group with type 3.

Fig. 1. Pure assignment and random assignment

Formally, an assignment is a tuple γ = (γN′ , ..., γN ) such that
1. for all N ′ ≤ n ≤ N , γn is a positive measure on In

2.
∑N
n=N′(π1)#γn = µ

3. for all N ′ ≤ n ≤ N , σn ∈ O(n), (σn)#γn = γn
Moreover, we use Γsym to be the set containing all assignments γ.
For both expositional and technical reasons, we separate the study of the
special case where N ′ = N . In this case, an assignment γ is defined to
be a probability measure on IN satisfying the latter two conditions:



2′ (π1)#γn = µ
3′ For all σn ∈ O(n), (σn)#γ = γ

Intuitively, for any group C = (i1, ..., In) ∈ In, γ(C) is 1/n! times the
probability the set of agents {i1, ..., in} forming a group according to γ.
The coefficient 1/n! appears as the set of agents {i1, ..., in} corresponds
to n! elements in In. Condition 2′ states market clearing condition that
all agents are assigned into some groups. To describe it, we note for any
subset of types A ⊂ I, γn(A, I, ..., I) denotes the probability agents of
types belonging to A are assigned into some group. And this number
should equal to the measure of this subset A. That is, γn(A, I, ..., I) =
µ(A). Condition 3′ states the symmetry requirement that reordering of
members in a group will not change the probability a group is formed.
More generally when N ′ 6= N , any agent should be assigned by γ into
a group of some size n ∈ [N ′, N ]. Therefore, we can view each γn as a
grouping instruction for the subset of agents who will be assigned into
groups of size n. Intuitively γn(i1, ..., in) is 1/n! times the probability the
set of agents {i1, ..., in} forming a group according to γ. However, as the
subset of agents assigned to groups of the given size may not have the
full measure, condition 1 requires γn to be a positive measure, rather
than a probability measure, on In. Condition 2 and 3 are similar to the
previous special case: Condition 2, which is

∀A ∈ B(I),

N∑
n=1

γn(A, I, I, ..., I) = µ(A)

is the market clearing condition which states the mass of agents of types
belonging to A assigned by assignment γ is equal to the mass of agents
of types belonging to A. Condition 3, which is

∀σn ∈ O(n), ∀A1, ..., An ∈ B(I), γn(A1, ..., An) = γn(Aσn(1), ..., Aσn(n))

is the consistency requirement indicating the surplus of a group is invari-
ant under its members’ ordering.

2.3 Stable group assignment

Following the notions in [24], [14], [8], we say a group assignment γ ∈
Γsym is stable if it corresponds to an imputation u : I → R such that
1. for all N ′ ≤ n ≤ N , for γn-a.e. C = (i1, ..., in) ∈ In,

∑n
j=1 u(ij) ≤

v(C)
2. for all N ′ ≤ n ≤ N , C = (i1, ..., in) ∈ In,

∑n
j=1 u(ij) ≥ v(C)

As a comparison, text such as [12] by Gilles denotes this imputation as
core when the game v is supper-additive. Here, we study stable assign-
ments, a generalized version of matching, as we wish to study not only
the final allocation but also the group structures in equilibrium.
The first condition is the feasibility condition, requiring group members
can in total gain no more than the surplus of a group if this group
is formed. Since we only need this constraint on formed groups, the
inequality in condition 1 holds almost everywhere. The second condition
is the no-block condition, asserting no coalition will block the assignment
by generating a higher surplus by generating a higher surplus.



Although agents of the same type might be assigned into different groups
in different ways, we have the equal treatment property in the stable
scenario since, as we shall see in latter proof, groups will only be formed
in an efficient way.

2.4 Optimization problems

Finally, we state two related optimization problems. Firstly we state the
welfare maximization problem, or Monge-Kantorovich problem:

sup
γ∈Γsym

N∑
k=N′

∫
Ik
vkdγk

As we will see in the next section, when N ′ = N , the welfare max-
imization problem is reduced to the classical multi-marginal Monge-
Kantorovich problem with an additional symmetry constraint.

Secondly, we state its dual problem, the utility minimization problem or
dual Kantorovich problem:

inf
u∈U

∫
I

udµ

where U =
{
u ∈ L1(I) : ∀N ′ ≤ n ≤ N,∀C = (i1, ..., in) ∈ In,

∑n
j=1 u(ij) ≥ v(C)

}
is the set of imputations such that no groups will block.

There are three steps to show the non-emptiness of stable group assign-
ment: Firstly, we show the existence of a maximizer solving the welfare
maximization problem; Secondly, we show the maximization problem
and minimization problem are the same by stating a duality theorem;
Lastly, we show the stable group assignment coincides with the solution
of minimization problem.

We will state these statements formally and prove them in the following
section.

3 Stable assignments for groups of finite size

In this section, we study the case when group sizes are bounded by
two natural numbers. We proceed by two steps: Firstly, we work on the
case where only groups of size N could be formed. This case has a clear
connection to the multi-marginal optimal transport problem. Then we
study the general case.

3.1 Statements and proofs when group size is N

In this subsection, we focus on the case that only groups of maximized
size can be formed. Therefore, we analyze with one additional assumption
which will be dropped later.

(A4) N ′ = N . Or equivalently, v is a real-valued function on IN .



In this case, the choice set of welfare maximization problem contains
probability measures on IN . Hence, in this subsection, the set of assign-
ments is Γsym defined by:

Γsym = {γ ∈ P(IN ) : (π1)#γ = µ, σ#γ = γ, ∀σ ∈ O(N)}

For the purpose of comparison to the traditional multi-marginal optimal
transport theory, we define

Γ = {γ ∈ P(IN ) : (πj)#γ = µ, ∀1 ≤ j ≤ N}

Proposition 1. For the cooperative game ((I, µ), v,N ′, N), if v satisfies
(A1)-(A4), there exists a γ ∈ Γsym solving the welfare maximization
problem

sup
γ∈Γsym

∫ N

I

vdγ

In Appendix A, we attach a more direct proof which does not use the
conclusion of the traditional result. This direct proof inspires our proof
for the case of measure bounds later. Next, we state and prove the duality
theorem, which states that there is no gap between welfare maximization
problem and utility minimization problem.

Proposition 2. For the cooperative game ((I, µ), v,N ′, N), if v satisfies
(A1)-(A4),

sup
γ∈Γsym

∫
IN

vdγ = N inf
u∈U

∫
I

udµ

where U =
{
u ∈ L1(I) :

∑N
j=1 u(ij) ≥ v(C), ∀C = (i1, i2, ..., iN ) ∈ IN

}
and the infimum could be attained.

Lastly, similar to [14], we state and prove the relationship between stable
assignment and constrained utility minimization problem.

Proposition 3. For the cooperative game ((I, µ), v,N ′, N), if v satisfies
(A1)-(A4), the corresponding imputations of stable assignment coincides
with the solutions of the utility minimization problem.

Thanks to these three results, we could state our main theorem with the
presence of the assumption (A4):

Corollary. For the cooperative game ((I, µ), v,N ′, N), if v satisfies (A1)-
(A4), the set of stable assignment is non-empty.



3.2 Statements and proofs for the general case

In this part, we drop the assumption (A4). In this case, we recall the
maximization problem is in the form

sup
γ∈Γsym

N∑
k=N′

∫
Ik
vkdγk

The following lemma states its relationship with the special case we
discussed in previous subsection:

Lemma 1.

sup
γ∈Γsym

N∑
k=N′

∫
Ik
vkdγk = sup

(µk)
N
k=N′∈KN′,N (µ)

N∑
k=N′

sup
γk∈Γsym(µk)

∫
IK

vkdγk

where KN′,N (µ) contains all N-tuples (µN′ , ..., µN ) ∈ (P(I))N−N
′+1 where

µk are positive measures on I such that
∑N
k=N′ µk = µ. Additionally,

Γsym(µk) = {γk ∈M+(Ik) : (π1)#γk = µk, (σk)#γk = γk,∀σk ∈ O(k)}.2

This lemma states that maximizing over all group assignments is equiv-
alent to a two-step maximization. Note agents are formed by N −N ′+ 1
categories based on the size of the groups they will be assigned to. We
say a agent is in category k if this agent will be assigned to a group of size
k. Let µk ≤ µ be the distribution of agents in category k. The two-step
maximization is as follows: Firstly, we fix the distribution of agents in
each category and choose the best way to assign agents for each category
k into groups of size k, then choose the best way to divide the agents
into these categories.
Due to Lemma 1, we could generalize Proposition 1 to the general case if
we could assert the choice set KN′,N (µ) is compact and the functional is
upper semi-continuous. Therefore, we state and prove the following two
lemmas:

Lemma 2. KN′,N (µ) ⊂ (P(I))N−N
′+1 is sequentially compact.

Lemma 3. For any N ′ ≤ k ≤ N , if µk be a positive measure on Ik, the
functional on µk

sup
γ∈Γsym(µk)

∫
IK

vkdγ

is weak-* upper-semi continuous.

Now we state our existence result.

Proposition 4. For the cooperative game ((I, µ), v,N ′, N), if v satisfies
(A1)-(A3), there exists a γ ∈ Γsym solving the welfare maximization
problem.

2 Note Γsym and Γsym(µk) is not related to each other directly. Γsym is a subset of

the product space M+(IN
′
)× ...×M+(IN ) while Γsym(µk) is a subset of M+(Ik).



In addition, we can state the duality result without assuming (A4):

Proposition 5. For the cooperative game ((I, µ), v,N ′, N), if v satisfies
(A1)-(A3),

sup
γ∈Γsym

N∑
k=N′

∫
Ik
vkdγk = sup

(µk)∈KN′,N (µ)

N∑
k=N′

sup
γk∈Γsym(µk)

∫
IK

vkdγk = sup
(µk)∈KN′,N (µ)

N∑
k=N′

k inf
uk∈Uk

∫
I

udµk

and the extremum on the right hand side could be attained.

Lastly we state the relationship between stable assignment and con-
strained utility minimization problem:

Proposition 6. For the cooperative game ((I, µ), v,N ′, N), if v satisfies
(A1)-(A3), the corresponding imputations of stable assignment coincides
with the solutions of the utility minimization problem.

By above propositions, we can establish the existence of a stable assign-
ment:

Theorem 1. For the cooperative game ((I, µ), v,N ′, N), if v satisfies
(A1)-(A3), the set of stable assignment is non-empty.

3.3 A counter example when groups size is countable

It is natural to ask if the above arguments and conclusions will hold
in the limit case where the group size is countable. Unfortunately, the
answer is no due to the example below:

Example 1. Let the agent space be I = [0, 1] with the Euclidean metric
and initial distribution is uniform in Lebesgue measure. Consider v(C) =
|C|2 for all finite subset C ⊂ I. As the surplus of any fixed-size group
is constant, v satisfies (A1)-(A3). If there exists a integrable function
u on I, u is essentially bounded. That is, for any ε > 0, there exists
M > 0 and a set I ′ ⊂ I with measure greater than 1 − ε, u maps I ′ to
[−M,M ]. However, we need

∑
i∈C u(i) ≥ v(C) = |C|2 for all coalition

C. By taking a finite subset of size greater than M within I ′, we have the
contradiction. Thus, any large enough group will block the assignment.

3.4 Relationship with literature

As Theorem 1 does not assume the measure on agent space to be non-
atomic, our model can be degenerated to a number of classical result on
discrete agent space in the literature. In particular, when the measure
concentrates on n discrete point and the group size is bounded by 2, it
reduces to the existence result of stable roommate problem in [21]. Com-
pare to [6], we impose a weaker assumption on the surplus function. Our



solution concept does not require that each agent must be assigned to
only one other agent for sure. Thus, we prove the existence of a proba-
bilistic stable arrangement is always possible with weaker assumptions. If
we impose more structure on surplus function (e.g. surplus of two agents
of the same sex is zero and different sex is positive), it reduces to the ex-
istence results in [24], [14], [8]. Our notion of stable assignment is related
to f-core defined by Kaneko and Wooders in [15]. We argued the exis-
tence in an accurate sense and relax some of their assumptions, such as
continuity, compactness and closedness, thus providing a generalization
of their results.

4 Model for groups of positive size

4.1 Environment

In this section, we study a cooperative game ((I, µ), v, ε, ε′) defined as
follows. Let a Polish space I be the type space of agents and µ ∈ P(I) be
the distribution of agents’ types.

Similar to the formulation in [4], a group is denoted by a positive measure
on I that is weakly smaller than µ. We study the groups of size not larger
than ε ∈ (0, 1]. However, to guarantee the compactness of the choice set,
we also need to restrict our attention to group of size with a positive
lower bound ε′ ∈ (0, 1]. Clearly, ε ≥ ε′ here. In particular, this inequality
can be equality in which case only groups of size ε = ε′ could be formed.

To keep our notations clean, we use G, rather than Gε′,ε, to denote the
set of groups. Mathematically,

G = {ν ∈M+(I) : ν ≤ µ, ε′ ≤ ν(I) ≤ ε}

In particular, a group is denoted by an element ν ∈ G. Note, the space
M+(I) is metrizable, as, by Theorem 8.3.2 in [1], the total variation
norm ‖·‖0 generates the same topology as the weak topology onM+(I).

The surplus function v : G → R is a real valued function on the set of
groups satisfying,

(B1) v is upper semi-continuous in weak-* topology

(B2) v is bounded from above: there is a lower-semi continuous function
a ∈ L1(I) such that v(ν) ≤

∫
I
adν, for all ν ∈ G.

Similar to the case of finite bounds, (B1) states the continuity require-
ment of the surplus function and (B2) guarantees the integrability of the
surplus function.

4.2 Group Assignment

We define an assignment to be an element γ such that

1. γ ∈M+(G)

2. ∀A ∈ B(I),
∫
G ν(A)dγ(ν) = µ(A)



And we use ΓG to denote the set of assignments containing all assignment
γ.

Intuitively, γ(ν) is the number of copies group ν is formed according to
γ. The first condition asserts γ could be interpreted as an assignment
plan. Note in this case, an assignment is not a probability measure, since
if it is, by taking A = X in the second condition, we will obtain left
hand side is less than ε but right hand side is 1. The second condition is
the market clearing condition which states the mass that agents of types
belonging to A is assigned by assignment γ is equal to the mass of agents
of types belonging to A.

Note the set ΓG is non-empty as a 2
ε+ε′ point mass on the measure ε+ε′

2
µ ∈

G is an element in it.

4.3 Stable group assignment

Similar to the case when group sizes are finite, we say an assignment
γ ∈ ΓG is stable if there is an imputation u : I → R such that

1.
∫
I
udν ≤ v(ν) γ-a.e.,

2.
∫
I
udν ≥ v(ν)

The first condition is the feasibility condition requiring group members
can in total gain no more than the surplus the group could get if they
are assigned together. The second condition is the no-block condition,
asserting no feasible group ν could block the assignment by generating
a higher surplus.

4.4 Optimization Problems

We start by stating the welfare maximization problem, or Monge-Kantorovich
problem:

sup
γ∈ΓG

∫
G
vdγ

Secondly, we state the utility minimization problem, or dual Kantorovich
problem:

inf
u∈UG

∫
I

udµ

where UG =
{
u ∈ L1(I) : ∀1 ≤ n ≤ N,

∫
I
udν ≥ v(ν),∀ν ∈ G

}
is the set

of imputations such that no group has incentive to block.

We apply the same arguments to prove the existence of a stable assign-
ment. There are three steps to show the non-emptiness of stable group
assignment: Firstly, we show the existence of a maximizer solving the
welfare maximization problem. Secondly, we show the welfare maximiza-
tion problem and utility minimization problem have no gaps between
each other by stating a duality theorem. Lastly, we show the set of cor-
responding imputations of stable group assignment coincides with the
solutions of utility minimization problem.



5 Stable assignment of groups of positive size

In this section, we employ the same three-step argument to claim the
existence of a stable assignment.

Proposition 7. For the cooperative game ((I, µ), v, ε′, ε), if v satisfies
(B1)-(B2), there exists a γ ∈ ΓG solving the welfare maximization prob-
lem

sup
γ∈ΓG

∫
G
vdγ

Now we state and prove the duality theorem.

Proposition 8. For the cooperative game ((I, µ), v, ε′, ε), if v satisfies
(B1)-(B2),

sup
γ∈ΓG

∫
G
vdγ = inf

u∈U

∫
I

udµ

where U = {u ∈ L1(µ) :
∫
I
udν ≥ v(ν), ∀ν ∈ G} and the infimum could

be attained.

The proof is similar to the proof of 2-marginal case in [9].

Proposition 9. For the cooperative game ((I, µ), v, ε′, ε), if v satisfies
(B1)-(B2), the corresponding imputations of stable assignment coincides
with the solutions of the utility minimization problem.

By above propositions, we can establish the existence of a stable assign-
ment:

Theorem 2. For the cooperative game ((I, µ), v, ε′, ε), if v satisfies (B1)-
(B2), the set of stable assignments is non-empty.

5.1 Relationship with the literature

Schmeidler in [22] proved, in a Walrasian economy with a continuum of
agents and a finite dimensional commodity space, core and epsilon-sized
core coincide with each other.
However, in the cooperative game setting studied in this paper, this
equivalence result is not always true. We recall the stable assignment
solves:

argmax

{∫
G
vdγ :

∫
‖ν‖∈[ε′,ε]

νdγ = µ

}
In case v has the property that v(sν) > sv(ν) for all ν ∈ G and s > 1,
we have the optimal γ should concentrate on {ν : ‖ν‖ = ε}. Thus, for
different upper bound on group size ε, we have different set of stable
assignments and different associated imputations. Besides, by the similar
logic, in case v(sν) < sv(ν) for all ν ∈ G and s < 1, optimal γ should
concentrate on {ν : ‖ν‖ = ε′}. Therefore, in this case, different lower
bound on group size ε′ will induce different set of stable assignments and
different associated imputations.



6 Concluding remarks and future work

To sum up, in this paper, we studied assignment problem when there are
finite or positive bounds requirement on group sizes. The finite bounds
case is related to the concept f-core and the latter bound is related to
concepts core and ε-sized core. We showed, under no assumptions of non-
atomicness, compactness and with a weaker version of continuity, that a
stable assignment exists. Our setting is more general than the exchange
economy setting as we allow the surplus of a group to become lower when
some new consumers come to join.
This paper relates assignment problem with group size bounds to opti-
mal transport (Monge-Kantorovich) problem. In particular, this paper
relates the finite size bounds case corresponds to a multi-marginal op-
timal transport problem and the positive size bounds case corresponds
to a “continuum-” marginal optimal transport problem. By varying the
size of agent space and group size bounds, this paper provides a unified
framework and generalizes the existence results of Scarf in [21], Shap-
ley and Shubik in[24], Gresky, Ostroy and Zame in [14], Chiaporri, Mc-
Cann, Nesheim, Pass in [8] and[7]. Besides, it completes the discussion of
Schmeilder in[22] in a more general cooperative game setting. In terms of
optimization problems, more than linking the existence of stable assign-
ments to two optimization problems, this paper proves an easy corollary
of the existence and duality property for multi-marginal optimal trans-
port problem when transport plans are assumed to be symmetric and
new existence and duality results for the continuum-marginal optimal
transport problem.
The benefit of optimal transport problem is mentioned by Chiaporri, Mc-
Cann and Nesheim’s [8] and surveyed more detailedly in Villani’s book
[25]. For the completeness, we list a few as future work directions. To be-
gin with, under approperiate assumptions Monge solution coincides with
Kantorovich solution in 2-marginal case. By establishing this equivalence,
one can show the existence of a pure stable assignment instantly. Besides,
stable assignment and its related imputation are well characterized in
2-marginal case. In addition, there are sufficient conditions on surplus
function to guarantee the uniqueness of stable assignment in 2-marginal
case. Lastly, the analytical form of optimal transport plan is known for
some special case of transport cost (e.g. the transport cost is the dyadic
distance function) and numerous numerical methods have been intro-
duced for this problem. All these nice properties above are well-studied
in the classical 2-marginal case, but are not completely-understood in
multi-marginal case, and are left widely open in “continuum-” marginal
case.
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A Alternative proof of Proposition 1

We modified the proof in [25] to incorporate the symmetric condition
as well as multi-marginal condition. Due to the additional restriction on
choice set Γsym, we need to reprove it is closed.

Proof. Recall P ⊂ P(IN ) is tight if for any ε > 0, there is a compact
set Kε such that p(IN −Kε) ≤ ε for all p ∈ P. Since I is Polish space,
by Ulam’s theorem, {µ} is tight in I. i.e. There exists a compact set
Kε, such that µ(I −Kε) < ε. Hence, Γsym is tight in P(IN ) as for any
γ ∈ Γsym,

γ(IN − (Kε,Kε, ...,Kε)) ≤ Nµ(I −Kε) ≤ Nε

By Prokhorov’s theorem, Γsym has compact closure in weak* topology.
Thus, to show Γsym is compact, we only need to show it is closed: Taking
γk → γ in weak* topology for γk ∈ Γsym. Note as π1 is continuous map,
we have for any f ∈ Cb(IN ), f ◦ π1 ∈ Cb(I),∫

I

fd(π1)#γ =

∫
IN

f ◦ π1dγ = lim
n→∞

∫
IN

f ◦ π1dγn

= lim
n→∞

∫
I

fd(π1)#γn =

∫
I

fdµ

i.e. we have (π1)#γ = µ. Similarly, as σ ∈ O(n) is a continuous map on
IN , we obtain σ#γ = µ. Therefore, Γsym is closed thus compact.

Next we show
∫
vdγ is upper semi-continuous with respect to the vari-

able γ: Taking γk → γ. Without loss of generality, we can assume v to
be nonnegative as v is bounded from above by

∑N
n=1 an, which is lower-

semi continuous, we can study v−
∑N
n=1 an, which is a non-positive up-

per semi-continuous function. By the non-positive upper semi-continuity,
there is a decreasing sequence of vl converging to v, where vl is continu-
ous. By Monotone convergence theorem,∫

vdγ = lim
l→∞

∫
vldγ = lim

l→∞
lim
n→∞

∫
vldγn ≥ lim sup

n→∞

∫
vdγn

Finally, taking a sequence of γn ∈ Γsym approaching the supremum of∫
vdγ , by compactness, there is a subsequence converge to some measure

in Γsym. As the set Γsym is closed, the limit measure is in this set. And
this limit measure is the maximizer as the functional with respect to γ
is upper semi-continuous. �

B Proof of Proposition 1

Proof. By the traditional existence result of multi-marginal transport
problem in [25], there is a γ0 ∈ Γ solving the maximization problem:

max
γ∈Γ

∫
IN

vdγ



Define

γ̃ =
1

N !

∑
σ∈O(N)

σ#γ0

We claim γ̃ is also a solution to the above problem. It is easy to check γ̃ is
symmetric: for any test function f ∈ Cb(IN ), any permutation σ′ ∈ O(n),∫

IN
fdσ′#γ̃ =

∫
IN

f ◦ σ′dγ̃ =

∫
IN

 1

N !

∑
σ∈O(N)

f ◦ σ′ ◦ σ

 dγ0

=

∫
IN

 1

N !

∑
σ∈O(N)

f ◦ σ

 dγ0 =

∫
IN

fdγ̃

i.e. γ̃ = σ′#γ̃ for all σ′ ∈ O(N). That is, γ̃ ∈ Γsym. Moreover, since v is
symmetric, γ̃ induces the same total welfare as γ:∫

IN
vdγ̃ =

1

N !

∑
σ∈O(N)

∫
IN

vdσ#γ0 =
1

N !

∑
σ∈O(N)

∫
IN

v ◦ σdγ0

=
1

N !

∑
σ∈O(N)

∫
IN

vdγ0 =

∫
IN

vdγ0

Note as γ̃ ∈ Γsym, we have,

sup
γ∈Γsym

∫
IN

vdγ ≥
∫
IN

vdγ̃ = max
γ∈Γ

∫
IN

vdγ

The converse relation is obvious, as Γsym ⊂ Γ . Thus, we have the equal-
ity,

sup
γ∈Γsym

∫
IN

vdγ = max
γ∈Γ

∫
IN

vdγ

Hence, we know γ̃ is a solution for the problem. �

C Proof of Proposition 2

Proof. By the proof in section 3.1 of [3], we have

max
γ∈Γ

∫
IN

vdγ = min
uj∈Ũ

N∑
j=1

∫
I

ujdµ

for Ũ =
{

(u1, ..., uN ) ∈ (L1(I))N :
∑N
j=1 uj(ij) ≥ v(C),∀C = (i1, i2, ..., iN ) ∈ IN

}
and the infimum could be achieved. On the other hand, by the proof of
Proposition 1, we have

max
γ∈Γsym

∫
IN

vdγ = max
γ∈Γ

∫
IN

vdγ

So it remains to show

min
uj∈Ũ

N∑
j=1

∫
I

ujdµ = N inf
u∈U

∫
I

udµ



and the infimum on the right hand could be achieved.
Firstly, for any m ∈ N, take u∗ ∈ U such that

N

∫
I

u∗dµ ≤ N inf
u∈U

∫
I

udµ+
1

m

Take u∗j = u∗ for all 1 ≤ j ≤ N . Therefore, as u∗ ∈ U , for any 1 ≤ j ≤ N ,

we have uj ∈ L1(I) and
∑N
j=1 u

∗
j (ij) ≥ v(C) for any C = (i1, ..., iN ) ∈

IN . Thus, (u∗j )
N
j=1 ∈ Ũ . By definition,

min
uj∈Ũ

N∑
j=1

∫
I

ujdµ ≤
N∑
j=1

∫
I

u∗jdµ = N

∫
I

u∗dµ ≤ N inf
u∈U

∫
I

udµ+
1

m

Taking m goes to infinity,

sup
γ∈Γsym

∫
IN

vdγ ≤ N inf
u∈U

∫
I

udµ

Conversely, take (u∗j )
N
j=1 ∈ Ũ solving the left hand side, and define u∗ =

1
N

∑N
n=1 u

∗
n. Then, for any C = (i1, ..., iN ) ∈ IN , we have,

N∑
j=1

u∗(ij) =
1

N

N∑
j=1

N∑
n=1

u∗n(ij) =
1

N

∑
j=1

[
N−1∑
k=0

uj(ij+k)

]

≥ 1

N
[v(i1, ..., iN ) + v(i2, ..., iN , i1) + ...+ v(iN , i1, ...., iN−1)]

= v(C)

The last equality is by v is symmetric. Moreover, it is clear that u∗ ∈
L1(I) as ‖u∗‖L1 ≤ 1

N

∑N
j=1 ‖uj‖L1 <∞. Hence, u∗ ∈ U , and it implies

min
uj∈Ũ

N∑
j=1

∫
I

ujdµ =

N∑
j=1

∫
I

u∗jdµ = N

∫
I

u∗dµ ≥ N inf
u∈U

∫
I

udµ

In conclusion,

min
uj∈Ũ

N∑
j=1

∫
I

ujdµ = N inf
u∈U

∫
I

udµ

Moreover, u∗ = 1
N

∑N
j=1 u

∗
j is the solution of the utility minimization

problem. �

D Proof of Proposition 3

Proof. Firstly, we take a stable assignment γ. By definition, there ex-
ists an imputation u ∈ L1(I) such that

∑N
j=1 u(ij) ≥ v(C) for all C =

(i1, i2, ..., iN ) ∈ IN , and
∑N
j=1 u(ij) = v(C), for γ-a.e. C = (i1, i2, ..., iN ) ∈

IN . Then, we have∫
IN

vdγ =

N∑
j=1

∫
IN

u(ij)dγ =

N∑
j=1

∫
I

u(ij)dµ(ij) = N

∫
I

udµ



Now taking any y ∈ U , we have that
∑N
j=1 y(ij) ≥ v(C) for all C =

(i1, i2, ..., iN ) ∈ IN . Similarly,∫
IN

vdγ ≤ N
∫
I

ydµ

Therefore,
∫
I
udµ ≤

∫
I
ydµ. Consequently, u solves the utility minimiza-

tion problem.
Conversely, if u solves the utility minimization problem. we have

∑N
j=1 u(ij) ≥

v(C), for all groups C = (i1, i2, ..., iN ) ∈ IN . Then, by the existence re-
sult stated in Proposition 1 and duality theorem stated in Proposition
2, there is a γ solving the maximization problem and

∫
IN

vdγ =
∫
I
udµ.

Thus, for γ-a.e. C = (i1, i2, ..., iN ) ∈ IN ,
∑N
j=1 u(ij) = v(C). Thus, u is

a corresponding imputation and γ is stable. �

E Proof of Lemma 1

Proof. To be clean, we take

L = sup
γ∈Γsym

N∑
k=N′

∫
Ik
vkdγk

R = sup
(µk)

N
k=N′∈KN′,N (µ)

N∑
k=N′

sup
γk∈Γsym(µk)

∫
IK

vkdγk

By definition of supremum, for any m ∈ N, there is a γ(m) ∈ Γsym such
that

N∑
k=N′

∫
Ik
vkdγ

(m)
k +

1

m
> L

For each N ′ ≤ k ≤ N , define µ
(m)
k = (π1)#γ

(m)
k . It is straightforward to

show that µ
(m)
k is a positive measure on Ik. By

∑N
k=N′(π1)#γ

(m)
k (I) =

µ(I), we know
∑N
k=N′ µ

(m)
k = µ, which implies (µ

(m)
k )Nk=N′ ∈ KN′,N (µ).

As γ(m) ∈ Γsym, γ
(m)
k ∈ Γsym(µ

(m)
k ). Therefore,

∑N
k=N′

∫
Ik
vkdγ

(m)
k ≤ R,

which implies R + 1
m
≥ L. Take m → ∞, we have R ≥ L. Conversely,

for any m ∈ N, we take (µ
(m)
k )Nk=N′ ∈ KN′,N (µ) and γ

(m)
k ∈ Γk(µ

(m)
k )

such that
∫
Ik
vkdγ

(m)
k + 1

m
> R. Now we claim γ(m) = (γ

(m)

N′ , ..., γ
(m)
N )

is in Γsym. Firstly, it is clear each coordinate γ
(m)
k is a positive measure

on Ik. Moreover,
∑N
k=N′(π1)#γ

(m)
k =

∑N
k=N′ µ

(m)
k = µ. Lastly, we note

the symmetry of γ(m) follows from the fact γ
(m)
k is symmetric. Thus, we

have
∑N
k=N′

∫
Ik
vkdγ

(m)
k ≤ L which implies L > R + 1

m
. Take m → ∞,

we have L ≥ R. Hence, L = R. �

F Proof of Lemma 2

Proof. We first show KN (µ) := K1,N (µ) ⊂ (P(I))N is sequentially
compact by induction. When N = 2, to show {(µ1, µ2) ∈ (M+(I))2 :



µ1 + µ2 = µ} is sequentially compact, we only need to show H =
{µ1 ∈ M+(I) : µ1 ≤ µ} is sequentially compact: for any sequence

(µ
(m)
1 , µ

(m)
2 ) ∈ K2(µ), as µ

(m)
1 ⊂ H, µ

(m)
1 has a convergent subsequence

µ
(mk)
1 , µ

(mk)
2 = µ − µ(mk)

1 converges. Consequently, (µ
(mk)
1 , µ

(mk)
2 ) is a

convergent subsequence in K2(µ).
To see H is sequentially compact: Since I is Polish space, by Ulam’s
theorem, {µ} is tight in I. i.e. for any ε > 0, there exists a compact set
Kε, such that µ(I −Kε) < ε. Thus, for any 0 ≤ µ1 ≤ µ, µ1(I −Kε) <
ε. It implies the set {µ1 ∈ M+(I) : µ1 ≤ µ} is tight. On the other
hand, the total variation of any µ1 in this set is bounded by µ(X) =
1. By Prokhorov theorem for measures (Theorem 8.6.2 in [1]), the set
{µ1 ∈M+(I) : µ1 ≤ µ} is sequentially compact. It is easy to check the
set itself is closed, so {µ1 ∈M+(I) : µ1 ≤ µ} is sequentially compact.
Now, suppose for N ∈ N, KN (µ) ⊂ (P(I))N is sequentially compact.
Then,

KN+1(µ) =
{

((µ1, ..., µN ), µN+1) ∈M+(I)N+1 : µ1 + ...+ µN+1 = µ
}

≡
{

((µ1, ..., µN ), µN+1) ∈ (M+(I))N+1 : 0 ≤ µN+1 ≤ µ, (µ1, ..., µN ) ∈ KN (µ− µN+1)
}

Due to the separability of I, the weak convergence on M+(I) is metrizable
by Levy-Prokhorov metric dP generalized by the Kantorovich-Rubinstein
norm ‖·‖0 (Theorem 8.3.2 in [1] ). Define the product metric d on

(M+(I))N by d((x1, ..., xN ), (y1, ..., yN )) =
∑N
k=1 dP (xk, yk). Now take

any sequence (µ
(m)
1 , ..., µ

(m)
N+1) in KN+1(µ). Note µ

(m)
N+1 ⊂ H, it has a

convergent subsequence µ
(mk)
N+1 . So without loss of generality, we assume

µ
(m)
N+1 converges to some µ∗N+1. It is easy to see µ∗N+1 ∈ H as H is closed.

Now we denote the projection of (µ
(m)
1 , ..., µ

(m)
N ) on KN (µ − µ∗N+1) by

PK(µ
(m)
1 , ..., µ

(m)
N ), and its complement by P⊥K (µ

(m)
1 , ..., µ

(m)
N ). By induc-

tion hypothesis, KN (µ − µ∗N+1) is sequentially compact, thus there is a

subsequence (mk) such that PK(µ
(mk)
1 , ..., µ

(mk)
N ) converges. Note

(µ
(mk)
1 , ..., µ

(mk)
N ) = PK(µ

(mk)
1 , ..., µ

(mk)
N ) + P⊥K (µ

(mk)
1 , ..., µ

(mk)
N )

Thus, to see (µ
(mk)
1 , ..., µ

(mk)
N ) is convergent, it suffices to show P⊥K (µ

(mk)
1 , ..., µ

(mk)
N )

converges to zero as k →∞, or, equivalently,d((µ
(mk)
1 , ..., µ

(mk)
N ),KN (µ−

µ∗N+1)) converges to 0. Note, for any mk, µ
(mk)
1 + ...+ µ

(mk)
N+1 = µ. So,

N∑
i=1

(
µ
(mk)
i +

1

N
µ
(mk)
N+1 −

1

N
µ∗N+1

)
= µ− µ∗N+1

As a result, (µ
(mk)
1 − 1

N
µ∗N+1 + 1

N
µ
(mk)
N+1 , ..., µ

(mk)
N − 1

N
µ∗N+1 + 1

N
µ
(mk)
N+1 ) ∈

KN (µ− µ∗N+1). Therefore,

d((µ
(mk)
1 , ..., µ

(mk)
N ),KN (µ− µ∗N+1))

≤ d((µ
(mk)
1 , ..., µ

(mk)
N ), (µ

(mk)
1 − 1

N
µ∗N+1 +

1

N
µ
(mk)
N+1 , ..., µ

(mk)
N − 1

N
µ∗N+1 +

1

N
µ
(mk)
N+1 ))

≤ N × 1

N

∥∥∥µ(mk)
N+1 − µ

∗
N+1

∥∥∥
0

→ 0



Thus, we obtain a convergent subsequence of (µ
(m)
1 , ..., µ

(m)
N+1). That is,

KN+1(µ) is sequentially compact. Hence, we know KN (µ) := K1,N (µ) ⊂
(P(I))N is sequentially compact.
Next, we notice KN′,N (µ) could be embedded into KN (µ) by taking the
first N ′ − 1 coordinate to be zero. Thus, as the embedding image forms
a closed subset of KN (µ), KN′,N (µ) is sequentially compact. �

G Proof of Lemma 3

Proof. By Proposition 2, we have the duality

sup
γ∈Γsym(µk)

∫
Ik
vkdγ = k inf

u∈Uk

∫
I

udµk

where Uk = {u ∈ L1(I) :
∑k
j=1 u(ij) ≥ v(C),∀C = (i1, i2, ..., ik) ∈ Ik}.

So we only need to show the upper semi-continuity of infimum on the
right hand side. Take µ(m) → µk, by the existence result in Proposition
2, we could take the u∗ ∈ L1(I) minimizing infu∈Uk

∫
I
udµk. Then as

continuous functions are dense in L1,
∫
I
u∗dµ(m) →

∫
I
u∗dµk, which

implies

lim sup
m

inf
u∈Uk

∫
I

udµ(m) ≤ inf
u∈Uk

∫
I

udµk

�

H Proof of Proposition 4

Proof. By lemma 1, 2 and 3, the solution of welfare maximization prob-
lem could be attained. �

I Proof of Proposition 5

Proof. The first equality is asserted by Proposition 2 and Lemma 1. The
second equality is asserted by Lemma 1. The extremum could be achieved
is asserted by Lemma 2 and Lemma 3. �

J Proof of Proposition 6

Proof. We use Proposition 5:

sup
γ∈Γsym

N∑
k=N′

∫
Ik
vkdγk = sup

(µk)∈KN′,N (µ)

N∑
k=N′

sup
γk∈Γsym(µk)

∫
IK

vkdγk

= sup
(µk)∈KN′,N (µ)

N∑
k=N′

k inf
uk∈Uk

∫
I

udµk

Moreover, by Propositions 1, 2 and the fact that KN′,N (µ), the supre-
mum and infimum are attained. Firstly, we take a stable assignment



γ∗ = (γ∗N′ , ..., γ∗N ). By definition, there exists a u∗ ∈ L1(I) such that, for
all N ′ ≤ k ≤ N ,

∑k
j=1 u

∗(ij) ≥ vk(C) for all C = (i1, i2, ..., ik) ∈ Ik,

and
∑k
j=1 u

∗(ij) = vk(C), for all γ∗k-a.e. C = (i1, i2, ..., ik) ∈ Ik. Thus,

u∗ ∈ Uk for all N ′ ≤ k ≤ N and

N∑
k=N′

∫
Ik
vkdγ

∗
k =

N∑
k=N′

∫
Ik

k∑
j=1

u∗(ij)dγ
∗
k(i1, ..., ik) =

N∑
k=N′

k

∫
I

u∗dµ∗k

where µ∗k = γ∗k(Ik).
Now take any uk ∈ Uk, we have,

∑k
j=1 uk(ij) ≥ vk(C) for all C =

(i1, i2, ..., ik) ∈ Ik by definition. Then, we have
∑N
k=N′

∫
Ik
vkdγk ≤∑N

k=N′ k
∫
I
ukdµk for any γ ∈ Γsym. Therefore,

N∑
k=N′

k

∫
I

u∗dµ∗k ≤
N∑

k=N′

k

∫
I

ukdµ
∗
k

Hence,

N∑
k=N′

k

∫
I

u∗dµ∗k ≤
N∑

k=N′

k inf
uk∈Uk

∫
I

ukdµ
∗
k ≤ sup

(µk)
N
k=N′∈KN′,N (µ)

N∑
k=N′

k inf
uk∈Uk

∫
I

ukdµk

That is the sequence (uk = u∗, µk = µ∗k)Nk=N′ solves the utility minimiza-
tion problem.
Conversely, by the existence result in Proposition 5, we pick (u∗k, µ

∗
k)N′≤k≤N

solving the utility minimization problem. Define u∗ = maxN′≤k≤N u
∗
k,

then it is clear that for any N ′ ≤ k ≤ N , C = (i1, ..., ik) ∈ Ik,∑k
j=1 u

∗(ij) ≥
∑k
j=1 u

∗
j (ij) ≥ vk(C). Moreover, we note µ∗k is supported

by a subset of {i ∈ I : u∗k(i) = u∗(i)}. By the duality in Proposition 5, for
fixed µ∗k’s, there exists γk ∈ Γsym(µ∗k) such that

∫
Ik
vkdγ

∗
k = k

∫
I
u∗kdµ

∗.

Thus,
∑k
j=1 u

∗
k(ij) = vk(C) for all γ∗k-a.e. C = (i1, i2, ..., ik) ∈ Ik. But

we note γ∗k has marginal µk, which is supported on {i ∈ I : u∗k(i) =
u∗(i)}, so γ∗k is supported by a subset of the k-fold Cartesian product
{i ∈ I : u∗k(i) = u∗(i)}k. Consequently, we have

∑k
j=1 u

∗
k(ij) = vk(C)

for all γ∗k-a.e. C = (i1, i2, ..., ik) ∈ {i ∈ I : u∗k(i) = u∗(i)}k. But on
{i ∈ I : u∗k(i) = u∗(i)}, u∗k = u∗, so,

∑k
j=1 u

∗
k(ij) = vk(C) for all γ∗k-a.e.

C = (i1, i2, ..., ik) ∈ Ik. Hence, we showed γ∗ = (γ∗N′ , ..., γ∗N ) corresponds
to an imputation u∗, thus is a stable assignment. �

K Proof of Proposition 7

Proof. We proceed in two steps. Firstly, we show the choice set ΓG is
compact. Then, we show the functional with respect to γ is upper semi-
continuous in weak-* topology.
Since I is a Polish space, by Ulam’s theorem, {µ} is tight in I. i.e. For any
ε1 > 0, there is a compact set K ⊂ I, such that µ(I −K) < ε1. Hence,
G is tight in M+(I) as for any ν ∈ G, ν(I − K) ≤ µ(I − K) ≤ ε1. By
Prokhorov theorem for measures (Theorem 8.6.2 in [1]), Ḡ is sequentially



compact. It is easy to check G is closed and we have argued G ⊂M+(µ)
has a metric, and a norm, we have G is compact.
Therefore, ΓG ⊂ M+(G) is tight. On the other hand, as ‖ν‖0 ≥ ε′,
therefore, ‖γ‖0 ≤ 1/ε′ for all γ ∈ ΓG . Thus, again by Prokhorov theorem
for measures, ΓG is sequentially compact.
To see

∫
G vdγ is upper-semi continuous on γ. Let γn → γ in M+(G).

We take a decreasing sequence of vl converging to v pointwisely, where
vl is continuous. By Monotone convergence theorem and the fact vl is
decreasing,∫

G
vdγ = lim

l→∞

∫
G
vldγ = lim

l→∞
lim
n→∞

∫
G
vldγn ≥ lim sup

n→∞

∫
G
vdγn

Finally, taking a sequence of γn ∈ Γsym approaching the supremum
of
∫
G vdγ , by compactness, there is a subsequence converging to some

measure in Γsym. As the set Γsym is closed, this limit measure is also in
Γsym. This limit measure is the maximizer since the functional

∫
G vdγ

with respect to γ is upper semi-continuous. �

L Proof of Proposition 8

Proof. To begin with, for any u ∈ UG ,
∫
I
udν ≥ v(ν), which implies∫

I
udµ =

∫
G

∫
I
udνdγ ≥

∫
G vdγ for any γ ∈ ΓG . Hence, supγ∈ΓG

∫
G vdγ ≤

infu∈U
∫
I
udµ. From now on, we prove its converse relation: For each

u ∈ C(I), define Fu ∈ C(G) by

Fu(ν) =

∫
I

udν

The continuity of Fu is instant by definition of weak convergence. Let L
be a space containing all such Fu, that is, L = {Fu : u ∈ C(I)}. To see L
is a linear space, we note for any a ∈ R, aFu = Fau and Fu+Fu′ = Fu+u′ .
Next, define H to be a subset of C(G) by H = {T ∈ C(G) : T (ν) ≥ v(ν)}.
It is easy to see H is convex. As v is bounded from above by a continuous
function, the interior of H is non-empty (The continuous function plus
one is in interior). Now, we define a linear form r on L, by

r(Fu) =

∫
I

udµ

As aFu + bFu′ = Fau+bu′ for any u, u′ ∈ C(I), a, b ∈ R, we know r is
linear. Moreover, r is bounded below on L∩H, since, for any γ ∈ ΓG (we
have noticed that the set is non-empty in the definition part),

r(Fu) =

∫
I

udµ =

∫
G

∫
I

udνdγ ≥
∫
G
v(ν)dγ ≥ inf

ν∈G
v(ν)

Note as v is upper-semi continuous on a compact set, infν∈G v(ν) < ∞,
that is r is bounded from below. By Hahn-Banach theorem (Theorem
6.2.11 in [9]), r can be extended to a linear form r̃ on C(G) such that,

inf
T∈H

r̃(T ) = inf
T∈L∩H

r(T )



Now we argue r is a positive functional: For any T ≥ 0 in C(G), we
have ṽ + cT + 1 ∈ H, where ṽ is a continuous function close enough to
v, for any positive c. Note infH r̃ = infH∩L r ≥ inf v, by taking c large
enough, we get r̃(T ) ≥ 0. To see r is bounded, we note for any T ∈ C(G),
|r(T )| ≤ |r(1)| ‖T‖∞.
Hence, by G is compact, by Riesz-Markov-Kakutani representation the-
orem (Theorem 7.4.1 in [9] ), there exists a finite positive regular Borel
measure ρ such that r̃(T ) =

∫
G Tdρ for any T ∈ C(G). Lastly we show

ρ ∈ ΓG . Note for T ∈ L, T (ν) =
∫
I
udν if T = Fu. Therefore, for any

continuous function u on G,∫
G

∫
I

udνdρ =

∫
I

udµ

we know ρ ∈ ΓG . Therefore,

inf
u∈UG

∫
I

udµ = inf
T∈H∩L

r(T ) = inf
T∈H

r̃(T ) = inf
T∈H

∫
G
Tdρ =

∫
G
vdρ ≤ sup

γ∈ΓG

∫
G
vdγ

On the other hand, the infimum could be attained follows from the proof
in [17], as a consequence of uniform integrability. �

M Proof of Proposition 9

Proof. Firstly, we take a stable assignment γ. By definition, there exists
a u ∈ L1(I) such that

∫
I
udν ≥ v(ν) for all ν ∈ G, and

∫
I
udν ≤ v(ν),

for all γ-a.e. ν. Therefore,
∫
G vdγ =

∫
G

∫
I
udνdγ =

∫
I
udµ Now taking

any y ∈ UG , we have that
∫
I
ydν ≥ v(ν) for all ν ∈ G. Thus,

∫
G vdγ ≤∫

G

∫
I
ydνdγ =

∫
I
ydµ. Therefore,

∫
I
udµ ≤

∫
I
ydµ. Thus, u solves the

minimization problem.
Conversely, if u solves the minimization problem. we have

∫
I
udν ≥ v(ν),

for all groups ν ∈ G. Then, by the duality theorem Proposition 8, there is
a γ solving the welfare maximization problem and

∫
I
vdγ =

∫
I
udµ. Thus,

for γ-a.e. ν,
∫
I
udν = v(ν). As a result, u is a corresponding imputation

and γ is stable. �


