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Abstract. In this work we study several cost allocation methods and
their implication in the ridesharing domain. We first identify a list of
desiderata: properties (or axioms) that any reasonable ridesharing mech-
anism should satisfy; working from these axioms, we derive several rideshar-
ing mechanisms. Our main technical contribution is the identification of
a unique strategyproof cost-sharing mechanism, known in the literature
as the constrained equal gains mechanism, or CEG. Strategyproofness
might be desirable in large markets, as it prevents market inefficiency
caused by unnecessary strategic behavior on the passengers’ side. How-
ever, as our simulations show, this comes at some cost: CEG places an
unusually high financial burden on players with low costs, and (arguably)
over-rewards players with high costs. We show this via a comparison with
other cost-sharing mechanisms in simulated environments based on the
NYC taxi dataset.

1 Introduction

Cost sharing problems (also known as bankruptcy problems) are an age-old prob-
lem: a group of people each have a personal cost; however, their joint cost is not
the sum of their costs, so a way is needed to divide it between them4. This simple
abstraction is surprisingly powerful, describing scenarios such as allocating liq-
uidated asset revenue to creditors or dividing cab fares amongst friends. Recent
years have seen the rise of a novel application of the bankruptcy problem, ar-
guably exceeding prior ones in both ubiquity and scale. Ridesharing services such
as Uber and Lyft have revolutionized the on-demand transportation market, of-
fering a convenient, low-cost alternative to urban commuters. These applications
have recently begun to feature ridesharing services, where passengers are offered
discounted rides if they agree to commute with others. Much like bankruptcy
problems, users have an individual cost — how much they would pay had they
commuted alone — and the joint cost of the shared ride.

4 This is inspired by bankruptcies, in which each creditor incurs a cost (the debt),
but can recover it only from the estate, which is smaller than the sum of all creditor
claims.
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The ridesharing problem differs from classic bankruptcy problems in one sig-
nificant way: ride costs are derived from an underlying graph structure. This
raises interesting problems: one is an optimization issue — finding the optimal
allocation of riders to shared services is (perhaps unsurprisingly) computation-
ally intractable. However, the underlying graphical model has interesting im-
plications to agents’ strategic behavior, adding manipulation methods to those
commonly seen in bankruptcy problems. In the cost sharing setting, instead of
reporting a cost ci, agent i can misreport her location to be ε far from her true
destination, and ride solo the rest of the way. A cost sharing mechanism is ma-
nipulable if misreporting is beneficial in some circumstances. By offering users
an opportunity to exploit the market for their own gain, manipulable mecha-
nisms risk having commuters strategically gaming the system; indeed, with the
increasing proliferation of on-demand ridesharing and self-driving cars becoming
a reality, improperly designed fare-sharing mechanisms could result in large-scale
market inefficiency.

1.1 Our Contributions

We explore axiomatic fair division methods for ridesharing. We show that cer-
tain natural cost sharing axioms are incompatible, while others result in natural
mechanisms (such as proportional allocation). More importantly, we study a
particular fare allocation method (known in the literature as constrained equal
gains, or CEG) which uniquely satisfies a set of natural axioms, as well as strat-
egyproofness. Our proofs require a careful handling of the underlying graph
structure; this is despite the fact that our ridesharing mechanisms do not explic-
itly take the underlying road network as input, as such mechanisms would seem
to be quite unwieldy for practical use.

Finally, we demonstrate our result on the New-York City taxi dataset, and
in the course of this, we demonstrate that other mechanisms, while not having
CEG’s axiomatic properties, have some other desirable features. Furthermore,
we develop an experimental framework for testing ridesharing mechanisms using
Google Maps5.

1.2 Related Work

Much of the previous work on the ridesharing problem focuses on optimally
matching riders to taxis [2], or planning optimal drop-off routes [8, 13, 14]; these
problems are computationally hard in general (see [1] for a review). In their re-
view of ridesharing problems, Furuhata et al. [7] mention three pertinent issues:
incentivizing truthful behavior from participants, dividing cost fairly, and effi-
ciently handling online rideshare requests. In this paper, we tackle the first two
of these issues, effectively showing that egalitarianism (all people pay the same)
is deeply linked to strategyproofness, while other notions of fairness are, to a
degree, incompatible. Kamar and Horvitz [11] and Kleiner et al. [12] investigate

5 To maintain blind review, we will add the URL after the review process is complete.
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VCG-based mechanisms for real-time cost sharing [10]; these mechanisms focus
on real-time ridesharing and do not take an axiomatic approach. Zhao et al. [17]
use a somewhat different model of ridesharing, and attempt to use VCG in ride-
sharing settings, but they find it on satisfactory, resorting to other, less efficient
mechanisms. Bistaffa et al. [4] propose a coalitional game approach for finding a
fair cost sharing allocation in the ridesharing domain, but their approach is not
axiomatic either.

Frisk et al. [6] discuss the cost division problem in a static setting. They
axiomatically investigate cost sharing methods like proportional sharing, the
Shapley value [16] and Equal Profit Sharing, but find that these can result in
unstable allocations. Axiomatic cost sharing is well explored (see [15] for a de-
tailed review), and is often applied to resource or goods allocation [3]. Beyond
their applications in ridesharing services, some online services have implemented
cost sharing mechanisms for allocating taxi fares. One notable example is the
Spliddit website (spliddit.org) [9], which offers a Shapley value based fare di-
vision mechanism. However, as noted by the designers, their mechanism is not
even individually rational in some cases.

2 Preliminaries

We are given a set N = {1, . . . , n} of players (the passengers), assumed to start
from the same location s.6 Each player i ∈ N can opt to not use the ridesharing
service, and commute alone to her destination at a cost of ci; we assume that
c1 ≤ · · · ≤ cn. If players choose to share their ride, they incur a total cost
of F , where

∑n
i=1 ci ≥ F . Players’ costs are induced by an underlying graph

structure: the location s is a node in a weighted, directed graph, the costs ci are
the shortest paths to a node vi which is player i’s destination, and the shared
cost F is the shortest path passing through the nodes v1, . . . , vn. Computing F
is, rather unsurprisingly, computationally intractable; however, since this work
studies the cost sharing problem, rather than the underlying optimization that
generates it, we assume that F is given to us as input.

More formally, we are interested in cost sharing mechanisms; these are func-
tions whose input is a cost sharing problem 〈c;F 〉, and whose output is a vector
〈p1(c;F ), . . . , pn(c;F )〉, where pi(c;F ) is the amount to be paid by player i.

Note that our cost sharing mechanisms do not receive the underlying graph
as input. In particular, they do not consider parameters such as the marginal
cost of players to the ride. This is a conscious modeling choice in this work: our
results can be easily applied in other settings beyond the ridesharing domain; it
produces a simple and easily predictable solution to the problem at hand, which
can be more easily used (one doubts passengers will relish checking each others’

6 Since the objective of this work is cost sharing rather than the underlying opti-
mization problem, assuming that all passengers start from the same location does
not significantly affect our results (particularly the impossibility results). Practically
speaking, though, such a setting arises following well-attended events, such as sports
games, when people wish to get home from the event venue.



IV

destination coordinates to determine if a ride is beneficial for them); and it does
not necessitate an exponential number of calculations of an intractable problem.

Let us start our investigation by first describing the axioms used in this work.

Efficiency (Eff) Payments sum up to the cost:
∑n

i=1 pi(c;F ) = F .
Symmetry (Sym) If ci = cj , then pi(c;F ) = pj(c;F ).
Individual Rationality (IR) No agent pays more for ridesharing than they

would pay on their own: for all i ∈ N , pi(c;F ) ≤ ci.
Non negativity (NN) pi(c;F ) ≥ 0.
Strategyproofness (SP) An agent will not benefit by misreporting its des-

tination and taking a subsequent ride from that destination to the true
one: letting F ′ being the cost after misreporting of agent i, we require that
pi(c−i, c

′
i;F
′) + |ci − c′i| ≥ pi(c;F ). Note that |ci − c′i|, is a lower bound on

the cost of travel between i and i′.
Group strategyproofness (GSP) A set of agents will not all benefit by mis-

reporting their destinations and taking a ride from that destination to the
real one. Fixing S ⊆ N , let c′S be the costs reported by S (whereas cS is
their true costs), and let F ′ be the new total cost; then for some i ∈ S:
pi(c−S , c

′
S ;F ′) + |ci − c′i| ≥ pi(c;F ).

Additivity (Add) If a single agent decides to split (e.g., a couple of friends
changing their plans and instead of going together to a faraway show, go
each to their own home) such that their individual shortest paths sum up
to their previous joint one, and without it effecting the overall time of the
whole route, the pricing for other agents does not change: For i 6= j ∈ N ,
pi(c;F ) = pi(c1, . . . , cj−1, c

′
j , cj − c′j , cj+1, . . . , cn;F ).

Player Monotonicity (Mono) If ci < cj , then pi(c;F ) ≤ pj(c;F ).
Scale invariance (SI) Scaling the entire instance by a constant α ∈ R+ pro-

portionally scales the allocations by α: For all i ∈ N , pi(αc;αF ) = αpi(c;F )

3 Incompatible Axiom Sets

Many of the axioms we are interested in turn out to be incompatible. This
section explores different combinations of axioms which are not compatible with
efficiency, symmetry, IR, and/or non-negativity.

Theorem 1. Efficiency, symmetry, non-negativity and group-strategyproofness
are incompatible.

Proof. Consider a set of n > 6 agents, each with ci = 3
2 . Their route from the

source has a shared portion with cost 3
4 , and then each agent has a different

portion with cost 3
4 . The overall cost of servicing all of them is F = 3

2n ( 3
2 to get

to the first destination, and 3
2 between each agent), and thanks to symmetry,

this means pi = 3
2 for each i ∈ N .

Now, let us take the set S ⊂ N , |S| = b 2n3 c + 2, which all manipulate to
announce their destination as to the edge of the shared route (so, for i ∈ S,
ci = 3

4 ). In order to prevent successful manipulation, at least one i ∈ S should
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have pi ≥ 3
4 , and due to symmetry, they all must have this. The overall cost of the

changed set, N ′ is F ′ = 3
2 |N \S| =

3
2 (dn3 e−2), This means

∑
i∈S pi ≥ |S|

3
4 > F ′,

and due to non-negativity,
∑

i∈N ′ pi > F ′, contradicting efficiency.

Theorem 2. The only pricing function that is efficient, IR, non-negative and
additive is proportional sharing

pi = F
ci∑n
j=1 cj

Proof. That the suggested function is efficient, IR, non-negative and additive
is clear (recall that F ≤

∑n
j=1 cj , as otherwise, the optimal cost would be for

people to take a vehicle to their destination on their own).

Thanks to non-negativity and additivity, we know that an agent with ci = 0
will have pi = 0. First, let us assume that for all i ∈ N , ci ∈ Q, i.e., ci = si

ti
,

si, ti ∈ N. We divide each agent i into si agents with cost of 1
ti

each, and
thanks to efficiency, symmetry and additivity, we know that for all agents,
p( 1∏n

j=1 ti
, . . . , 1∏n

j=1 ti
, F ) = F∑n

k=1 sk
∏n

j=1;j 6=k tj
, since there are

∑n
k=1 sk

∏n
j=1;j 6=k tj

elements in that sum. Therefore, and thanks to additivity, we know pi(c1, . . . , cn, F ) =

pi(ci,
1∏n

j=1 ti
, . . . , 1∏n

j=1 ti
, F ) = F

si
∏n

j=1;j 6=i ti∑n
k=1 sk

∏n
j=1;j 6=k tj

.

Looking closer at the fraction
si

∏n
j=1;j 6=i ti∑n

k=1 sk
∏n

j=1;j 6=k tj
, notice that

∑n
k=1 sk

∏n
j=1;j 6=k tj

si
∏n

j=1;j 6=i ti
=

n∑
k=1

skti
sitk

=

n∑
k=1

ck
ci

=

∑n
k=1 ck
ci

Therefore, pi(c1, . . . , cn, F ) = ci∑n
k=1 ck

F .

Now, because any additive function that is continuous at a single point is
continuous throughout, and pi is continuous at 0 (thanks to non-negativity and
additivity), this means what we have shown for ci ∈ Q is true for ci ∈ R as well.

Corollary 1. Efficiency, IR, non-negativity, additivity and strategyproofness are
not compatible.

Proof. Thanks to Theorem 2 we only need to show the pricing function pi(c1, . . . , cn, F ) =
F ci∑n

j=1 cj
is not strategyproof. Taking again the example from Theorem 1, exam-

ine a set of n > 2 agents, each with ci = 3
2 , which have a shared route from the

source of cost 3
4 , and then each with a different route of length 3

4 . The overall
cost of servicing all of them F = 3

2n, and each agent pays 3
2 . Should one of

them choose to deviate to edge of their shared route, it would cost that agent
3
2 (n− 1)

3
4

3
2 (n−1)+

3
4

+ 3
4 <

3
2 . Hence, it was beneficial for the agent to deviate.
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4 The CEG Mechanism

The constrained equal gains (CEG) mechanism [15, 3] takes an instance 〈c;F 〉,
and calculates λ, the solution of∑

i∈N
min{λ, ci} = F.

Under this mechanism, player i pays CEG i = min{λ, ci}. This means we can
essentially divide players into large ones if they pay λ, or small if they pay their
own cost (ci), which is less than λ. This is equivalent to stating that if there are
t large players,

λ =
1

t

F − n−t∑
j=1

cj

 .

It will be easier to consider an alternative characterization of CEG. Given
〈c;F 〉 we define Q(i) as:

Q(i) =
F −

∑
j<i cj

n− i+ 1

thus, Q(1) = F
n , Q(2) = F−c1

n−1 and so on. CEG can be then defined as follows:
we try setting λ = Q(1). If there are agents for which it is too high a cost, they
pay their own cost, and we try to set λ = Q(2), and continue this process until
we find a suitable λ.

4.1 CEG – a Strategyproof Mechanism

In this section, we show that CEG is strategyproof, assuming that an agent
cannot change the total cost of the ride too much by deviating.

Consider the case where some agent i ∈ N deviates. Suppose i’s true desti-
nation is di, at distance ci from s, and the cost of the original ridesharing route
is F . Suppose agent i announces their destination to be at d′i, which is c′i from
the source, making the new route cost F ′. Now, we define δ = c(d′i, di) — the
cost for agent i to get to the true destination from the one announced to the
ridesharing service. We also define δ′ = c(di, d

′
i) as the cost of going in the op-

posite direction. Since we do not assume the graph is necessarily symmetric, it
is possible that δ 6= δ′. Let t be the number of big players before the deviation
and t′ be the number of big players after the deviation. We provide a sketch of
the proof of Theorem 3, which states the strategyproofness of CEG, conditional
on a relation between δ, δ′ and t.

Theorem 3. CEG is strategyproof if δ′ ≤ (t− 1)δ for every agent on the graph.

Proof. Consider the original instance 〈c;F 〉, and the revised instance 〈c−i, c′i;F ′〉
resulting from the deviation described above. We wish to show such a deviation
cannot be profitable for agent i.
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Case 1: Agent i ends up being a small agent (in F ′)
Agent i is therefore paying c′i + δ (c′i to get to d′i, and δ to get from there

to di). Since ci is the minimal distance from s, ci ≤ c′i + δ, and since in CEG
no agent ever pays more than their cost (so agent i does not pay more than ci),
this cannot result in a profitable deviation for agent i.

Case 2: Agent i ends up being a big agent (in F ′)
If F ′ ≥ F , then the amount paid by a big agent only grows, so if agent i

is to profit from deviating then F ′ < F , which means t (number of big agents)
changed to t′ such that t′ > t. Also, note that since F ≤ F ′ + δ + δ′, we know
from the theorem’s condition that F ≤ F ′ + tδ.

The amount paid by agent i before deviation is min(ci,
F−x
t ), for x =

∑n−t−1
j=1 cj .

The amount paid by the agent after deviation is F ′−x′

t′ , for x′ =
∑n−t′−1

j=1 cj . So
in order for the deviation to be profitable

δ +
F ′ − x′

t′
<
F − x
t

Since F − x = F − x′ − y for y =
∑n−t−1

j=n−t′ cj , and since Also, thanks to the
theorem requirement, we know F ′ ≥ F − tδ, and therefore this can be written
as

δ +
F − x′ − tδ

t′
<
F − x′ − y

t

t′tδ + t(F − x′)− t2δ < t′(F − x′)− t′y

For agent cn−t′ , the smallest value turned big by agent i’s deviation, we know

F ′ − x′

t′
≤ cn−t′ <

F − x
t′

. Combining that F ′ ≥ F − tδ , this means

cn−t′ ≥
F − x′ − tδ

t′

Hence

y =
n−t−1∑
j=n−t′

cj ≥
n−t−1∑
j=n−t′

cn−t′ = (t′ − t)cn−t′

≥ (t′ − t)F − x
′ − tδ
t′

Returning to our previous equation, this means

t′tδ + t(F − x′)− t2δ < t′(F − x′)− t′y

t′tδ + t(F − x′)− t2δ < t′(F − x′)− t′(t′ − t)F − x
′ − tδ
t′

t′tδ + t(F − x′)− t2δ < t′(F − x′)− (t′ − t)(F − x′) + t(t′ − t)δ
t′tδ − t2δ < t(t′ − t)δ

which is a contradiction.
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If we drop the assumption that δ′ ≤ (t− 1)δ, then CEG is not strategyproof.
Consider Figure 1 with any ε > 0. The true location of agent 1 is at 1, and
c1 = 11, c2 = 14, F = 16 + ε so both agents will pay 8 + ε

2 under CEG. When
agent 1 reports his location as 1∗, F ′ = 14 so agent 1 pays 7 + 1 = 8 < 8 + ε

2 , so
in fact the bound is tight (and, indeed, when t = 2, the condition is equivalent
to a symmetric graph, though this is not true when t is larger).

s 1∗

1

2
10 4

1 1 + ε

Fig. 1. A possible deviation

4.2 CEG is Uniquely Strategyproof for up to 4 Players

In Section 4.1 we showed that CEG is strategyproof, given some reasonable
assumptions on the graph structure. Now, we would like to see if CEG is the
only strategyproof cost-sharing mechanism. We shall prove that for 4 players or
less, if we assume ci, F ∈ Q, and want a symmetric, individually rational, player
monotone, efficient and scale invariant mechanism, CEG is indeed unique.

Lemma 1. Suppose a strategyproof mechanism charges a passenger ci in the
setting 〈c;F 〉; then for any c∗i ≤ ci, the mechanism must charge the passenger
c∗i in any setting 〈c−i, c∗i ;F 〉.

Proof. Consider a setting generated by the graph described in Figure 2. The
mechanism cannot charge i more than c∗i when reporting destination as i∗ (due
to IR). If it charges i less than c∗i for reporting destination i∗, then i can profitably
deviate to i∗, be charged a sum of p∗i < c∗i , and travel the rest of the way alone
for a cost of ci − c∗i . This results in a total payment of strictly less than ci,
contradicting strategyproofness.

s 1 . . . i∗ i . . .
c1

c∗i

ci

Fig. 2. A possible deviation if the condition in Lemma 1 does not hold.
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Theorem 4. For a 4 player setting where c1 ≤ c2 ≤ c3 ≤ c4 ≤ F with rational
costs, when Theorem 3’s conditions are satisfied for any possible deviation by
players, CEG is the unique SP, IR, symmetric, player monotone, efficient and
scale invariant fare division.

Proof. For this section, we consider the case where c1, c2, c3, c4, F are all rational.
Given scale invariance, it suffices to consider settings with integer c1, c2, c3, c4, F .
Furthermore, by scale invariance, in instances where c1 ≤ c2 ≤ c3 ≤ c4 < F , we
can assume that c4 < F − 6 (by multiplying the whole instance by a suitably
large constant). By strategyproofness, pi needs to be continuous both in ci and
F , therefore we can extend to cases c1 ≤ c2 ≤ c3 ≤ c4 ≤ F .

We proceed to prove the theorem by induction on c1 +c2 +c3 +c4 +F . When
c1 = c2 = c3 = c4 = F = 0, each player pays 0 by IR, so equal sharing is used.
Suppose CEG is used whenever c1 + c2 + c3 + c4 + F < k. Consider an instance
with c1 + c2 + c3 + c4 + F = k. For the next parts, we check the cases based on
the number of big players in the system, as well as the number of big players
remaining after the selected player attempts to make a deviation. Below, Case
1 is the case where there are 4 big players. The rest 3 cases, omitted due to
space constraints have 3, 2, and a single big player respectively. We make use of
Lemma 1 to transition between cases.

Case 1: Consider the case where F
4 ≤ c1 ≤ c2 ≤ c3 ≤ c4 < F − 6

We want to show that equal sharing must be used. In the scenarios we con-
sider below, the original locations of players 1,2,3 and 4 are at nodes 1,2,3, and
4 respectively, and the deviating player moves from node p to p∗.

Case 1a: If c1 = c2 = c3 = c4, by symmetry equal sharing must be used.

Case 1b: If c1 < c2 = c3 = c4, consider Figure 3, and set a = F − c4 − 6
(note F − c4 − 6 ≥ 0 since we assume c4 ≤ F − 6). The best possible route is
s → 4 → 3 → 2 → 1, with a cost of F , or s → 4 → 3 → 2∗ → 2 → 2∗ → 1,
which also costs F . Now suppose player 2 reports his destination as 2∗ instead
of 2. The best route is now s → 4 → 3 → 2∗ → 1, with a cost of F − 4. This
is now an instance of the form 〈c1, c2 − 1, c3, c4;F − 4〉, and by the induction
hypothesis equal sharing must be used. Therefore, each player pays F

4 −1, and so

player 2 pays F
4 in total to his destination. Therefore, player 2 cannot pay more

than F
4 originally, otherwise this would be a viable manipulation, contradicting

strategyproofness. Since c2 = c3 = c4, by symmetry players 3 and 4 also cannot
pay more than F

4 , and so by efficiency equal sharing must be used in the original
scenario.

Case 1c: If c1 ≤ c2 < c3 = c4, consider the graph in Figure 4, and set a =
F − c4 − 6. A possibility for the optimal route is s → 4 → 3∗ → 3 → 2 → 1,
costing F . Now suppose player 3 reports his destination as 3∗ instead of 3. The
best route is now s → 4 → 3∗ → 2 → 1, which costs F − 4. With the same
argument as in case 1a, player 3 cannot pay more than F

4 in the original case.
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3 4
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c2 − 1

13
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c3
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F − c4 − 2

c4

1

Fig. 3. Graph for case 1b

s

1 2 3∗

3
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1

c2

13

1

c3 − 1

a

F − c4 − 2
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Fig. 4. Graph for case 1c
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F − c4 − 2

Fig. 5. Graph for case 1d
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By symmetry, player 4 also pays F
4 . By player monotonicity, players 1 and 2

cannot pay more than F
4 , so by efficiency equal sharing must be used in the

original setting.

Case 1d: If c1 ≤ c2 ≤ c3 < c4, consider the graph in Figure 5, and set a =
F − c4 − 5. The original best possible route is s→ 4∗ → 4→ 3→ 1, costing F .
If player 4 reports his destination as 4∗ instead of 4, the best possible route is
now s→ 4∗ → 3→ 2→ 1, costing F −4. With the same argument as in case 1a,
player 3 cannot pay more than F

4 in the original case. By player monotonicity,

players 1, 2 and 3 each cannot pay more than F
4 , so by efficiency equal sharing

must be used in the original setting.
The rest of the cases follow similar arguments; the appropriate graphs can

be constructed following the same structure as above by varying the value for a.
They are omitted due to space constraints. ut

Theorem 5. For a 2 (or 3) player setting where c1 ≤ c2(≤ c3) ≤ F with
rational costs, and when Theorem 3’s conditions are satisfied for the deviating
player, CEG is the unique SP, IR, symmetric, player monotone, efficient and
scale invariant fare division.

Proof (Sketch of proof). Set c1 and c2 to 0 in the proof of n = 4.

5 Simulations

0
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35

p1 p2 p3 p4 p5 p6 p7 p8 p9

Orig CEG CEL Prop Shapley

Fig. 6. Light blue bar at the left of each passenger indicates the average ci
F

; other bars
indicate average cost by sharing rule (normalized by F ).
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Fig. 7. Average percentage payment allocations with 2-4 agents under each allocation
rule.

We examine our cost sharing methods in practice by looking at real taxi
rides7 made from the same (approximate) location, i.e. within a radius of 300
meters. We ran a total of 423 simulations, for a total of 1416 shared rides (see
Table 2 for details) The costs were measured in seconds to reach the destination
at 17:00, calculated using the Google Maps Distance Matrix API; the optimal set
of routes was calculated using dynamic programming. We performed this routine
by optimally allocating sets of 9 players trying to get to their destination from
the same place at the same time, which we divided to separate taxis, limiting
cab capacity to 4.

7 http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml

Rule Min Max Stdev

CEG 0.076 16.726 5.623
CEL 1.287 8.969 2.926
Prop 0.812 12.238 3.701
Shapley 0.800 11.418 3.586

Table 1. Measures on utility properties of different sharing rules, averaged over 423
simulations of 9 players
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# of passengers in cab # of instances

1 275
2 346
3 340
4 455

Table 2. Number of instances generated, by number of passengers in ride

We compare the following cost-sharing methods:

Proportional: Players pay in proportion to their cost: pi = ci∑
i ci
F .

Shapley: Players pay the Shapley value (this is the method used by Spliddit); in
more detail, for every subset of players S ⊆ N , let F (S) be the fare that S would
have paid if they were the only players to be dropped off. Given S ⊆ N \ {i}, let
mi(S) be F (S∪{i})−F (S), i.e. the marginal contribution of i to S; the Shapley
value of i is 1

n!

∑
S⊆N\{i} |S|!(n− |S| − 1)!mi(S) (see [5] for details).

CEL: The savings from the shared ride are equally divided between passengers.
More formally, each player pays max{0, ci − µ}, where µ is the solution to F =∑n

i=1 max{0, ci − µ}.
CEG: Defined above in Section 4.

Of the four measures, only the Shapley value uses information beyond 〈c;F 〉,
as it computes ride costs for every subset S of players. This means that the
Shapley value is able to leverage more of the underlying graph structure than
the other allocation methods, and is, on the other hard, much more demanding
computationally.

Figure 6 describes the average percentage of the overall fare paid by the
players in each instance. While c1 ≤ c2 ≤ · · · ≤ c9 in all instances, players
were divided into taxis for an optimal driving time. Under CEG, players 1,2
and 3 pay fares close to their costs, while players 4, . . . , 9 pay significantly less
than their cost. This translates to closer equality of payment, and higher social
disparity in the division of the ridesharing surplus: lower cost players gain next
to nothing by participating in the shared ride, whereas higher cost players are
far better off. This can be observed in Table 1: the average maximal normalized
utility (measured as maxi∈N

ci−pi

F ) is higher for CEG than it is for any other
fare allocation method.

In 46.5% of multiplayer instances in our data, all passengers in a cab had
ci ≥ F

n , i.e., all passengers were big. In this case, CEG simply allocates a fare of
F
n to all players. Thus, to some extent, CEG uses very little information about
players’ costs, as opposed to more subtle mechanisms such as proportional or
the Shapley fare allocation. CEL does the opposite of CEG: smaller cost players
pay almost nothing, and savings are divided very evenly. This is easily seen in
Table 1, as well as Figure 7: the average maximal normalized utility of any player
is significantly lower for CEL than it is for other fare division methods. As can be
seen in Figures 5 and 5, the majority of losses and gains provided by CEG and
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CEL affect the players with the lowest and highest costs. The Shapley value is the
only allocation which accounts for players’ location on the graph; as a result,
the Shapley value allocations show much more local variation than the other
methods. However, despite its complex structure, Shapley-based allocations are
quite close those outputted by the proportional method (see Figure 7).

6 Conclusions and Future Work

This paper examines the cost-sharing problem in the context of ridesharing.
In doing so, we presented a set of desirable properties; after showing several
impossibility theorems regarding their combinations, showed that CEG is the
unique strategyproof mechanism for up to 4 participants – the number that can
fit in common cabs. Despite CEG’s attractive properties, our simulations show
it to be very rigid – CEG is strategyproof because it strives to make players’
payments as equal as possible. This benefits mainly players with high costs over
players with small ones, who see little benefit from ridesharing. In some sense,
our results show that no reasonable strategyproof mechanism can ensure that
all players strictly benefit from sharing the ride, unless the ridesharing savings
are very significant compared to each of their individual cost.

Such fare division method is, therefore, not very practical in the real world –
many participants will see very little benefit in ridesharing using it. Thus, non-
strategyproof techniques will inevitably be used, with a potential loss of revenue.
A possible direction for further research will try and examine ε-strategyproofness
or other truth approximation methods, to try and guarantee that manipulation
will not be very worthwhile. Indeed, while we show that CEG is uniquely strat-
egyproof for the case of up to four players, we do not have a general proof for
n players; this would certainly be an important first step in understanding the
general structure of strategyproof cost sharing.

A few other cost sharing methods for this problem were examined in our sim-
ulations; these methods are also axiomatically justified (the axiomatic treatment
of the Shapley value [16] is perhaps the most well-known, and [15] takes that ap-
proach to cost sharing, but using properties relevant to the ridesharing setting is
desirable). This means that one can go about choosing a cost sharing mechanism
in a rather principled way, choosing the axioms that are most pertinent to the
ridesharing application. Naturally, there is also plenty to investigate in the real-
world data that is becoming increasingly available for these topics. For example,
exploring people’s distribution when taking rides may allow for algorithms that
are tailor-made for common distributions, allowing various properties which will
apply only in specific settings.
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